VideoText Interactive

Homeschool and Independent Study Sampler

Print Materials

for
"Geometry: A Complete Course"

Unit I, Part C, Lesson 3 "Triangles"

Course Notes (5 pages) Student WorkText (3 pages) Solutions Manual (2 pages) Quizzes - Forms A and B (6 pages) Quiz Solutions (6 pages)

Measuring Polygons (cont.)

Triangle

Perimeter (P)

$$
\begin{aligned}
P & =4+7+9 \\
& =20 \mathrm{in}
\end{aligned}
$$

$$
P=a+b+c
$$

Measuring Polygons (cont.)

Right Triangle

Measuring Polygons (cont.)

Acute Triangle

Area (A)

$\mathrm{A}=\mathrm{b} \cdot \mathrm{h}$
$A=b \cdot \frac{1}{2} \cdot h$

Measuring Polygons (cont.)

Isosceles Triangle

$A=b \cdot h$
$A=b \cdot \frac{1}{2} h$

Measuring Polygons (cont.)

Obtuse Triangle

Area (A)

$$
\begin{aligned}
& A=b \cdot h \\
& A=b \cdot \frac{1}{2} h
\end{aligned}
$$

Unit I — The Structure of Geometry

Part C - Measurement

Lesson 3 - Triangles

Objective: To understand, and demonstrate, the concepts of area and perimeter, as they relate to triangles.

Important Terms:

Triangle - A polygon made with three line segments.
Right Triangle - A triangle in which one of the angles is a right angle $\left(90^{\circ}\right)$.
Perimeter - Intuitively, the measure of the distance around a simple closed plane curve. Formally, the perimeter of a polygon is simply the sum of the measures of its sides.

Perimeter of a Triangle - Formally, the perimeter of a triangle can be found by adding the measures of all three sides, as long as all of the sides are measured in the same units. There really is no standard formula for this relationship except to express it symbolically as $\mathrm{P}=\mathrm{a}+\mathrm{b}+\mathrm{c}$ where a, b, and c are the measures of the three sides.

Area - Intuitively, the number of non-overlapping unit squares, and parts of unit squares, which can be fit into the interior of a simple closed plane curve.

Area of a Triangle - Formally, the area A of a triangle, can be found by multiplying the measure of the base b by one-half of the measure of the height h on that base, as long as the base and height are measured in the same units. This is represented by the formula $A=b \cdot \frac{1}{2} \cdot h \quad$ or, more commonly, $A=\frac{1}{2} \cdot b \cdot h$.

Example: Find the perimeter and the area of the triangle illustrated below, using the indicated measures.

Solution: First, the perimeter of this triangle can be found intuitively, by adding the measures of all of its sides.

$$
P=13+15+21=49 \text { meters }
$$

Formally, the solution is the same since the formula tells us we must add the measures of all three sides.

$$
\begin{aligned}
P & =a+b+c \\
& =13+15+21 \\
& =49 \text { meters }
\end{aligned}
$$

Second, it is difficult, intuitively, to find the area of this triangle without cutting it up in pieces and rearranging, so we will find it formally, by using the formula for the area of a triangle.

$$
\begin{aligned}
A & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 21 \cdot 8 \\
& =84 \text { square meters }
\end{aligned}
$$

Lesson 3 - Exercises:

Find the area and perimeter of each of the triangles in exercises 1 through 8.
1.

2.

Lesson 3 - Exercises: (cont'd)

3.

4.

5.

6.

7.

8.

Find the area of each of the triangles in exercises 9 through 11. Express your answer in terms of t.
9.

10.

11. $t-7$

12. Find the area of the given right triangle if the measure of the line segment $A B$ is 13 inches and the measure of line segment $B C$ is 5 inches.

13. Perimeter $=$ Sum of the lengths of the sides $A=b \bullet b$

$$
\begin{array}{ll}
=\frac{1}{3} k+\frac{1}{5} k+\frac{1}{3} k+\frac{1}{5} k & =\left(\frac{1}{3} k\right) \cdot\left(\frac{1}{5} k\right) \\
=\frac{1}{3} k+\frac{1}{3} k+\frac{1}{5} k+\frac{1}{5} k & =\frac{1}{3} \cdot k \cdot \frac{1}{5} \cdot k \\
=\left(\frac{1}{3}+\frac{1}{3}\right) \cdot k+\left(\frac{1}{5}+\frac{1}{5}\right) \cdot k & =\frac{1}{3} \cdot \frac{1}{5} \cdot k \cdot k \\
=\left(\frac{1+1}{3}\right) \cdot k+\left(\frac{1+1}{5}\right) \cdot k & =\frac{1 \cdot 1}{3 \cdot 5} \cdot k \cdot k \\
=\frac{2}{3} \cdot k+\frac{2}{5} \cdot k & =\frac{1}{15} k^{2} \text { square ur } \\
=\left(\frac{2}{3}+\frac{2}{5}\right) \cdot k & \\
=\left(\frac{2 \cdot 5}{3 \cdot 5}+\frac{2 \cdot 3}{5 \cdot 3}\right) \cdot k & \\
=\left(\frac{10}{15}+\frac{6}{15}\right) \cdot k & \frac{10+6}{15} \cdot k \\
=\frac{16}{15} k &
\end{array}
$$

14. Perimeter $=$ Sum of the lengths of the sides

$$
\begin{aligned}
& =5 k+5 k+5 k+5 k \\
& =(5+5+5+5) \cdot k \\
& =20 k \text { units }
\end{aligned}
$$

$$
A=b \cdot b
$$

$$
=5 k \cdot(k+4)
$$

$$
=5 k \cdot k+5 k \cdot 4
$$

$$
=5 k^{2}+5 \cdot 4 \cdot k
$$

$$
=5 k^{2}+20 k
$$

$$
=\left(5 k^{2}+20 k\right) u^{u i t s}{ }^{2}
$$

Unit I - The Structure of Geometry

Part C - Measurement
p. 53 - Lesson 3 - Triangles
1.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 7 \mathrm{ft} \cdot 4 \mathrm{ft} \\
& =\frac{1 \cdot 7 \cdot \mathrm{~s} \cdot 2}{\mathrm{x} \cdot 1} \\
& =14 \mathrm{sq} \cdot \mathrm{ft} \text { or } 14 \mathrm{ft}^{2}
\end{aligned}
$$

Perimeter $=$ Sum of the lengths of the sides
$=3 f t+7 f t+6 f t$
$=10 f t+6 f t$
$=16 \mathrm{ft}$
4.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 15 \mathrm{~cm} \cdot \frac{15 \sqrt{3}}{2} \mathrm{~cm} \\
& =\frac{1 \cdot 15 \cdot 15 \cdot \sqrt{3}}{2 \cdot 1 \cdot 2} \\
& =\frac{225 \sqrt{3}}{4} \mathrm{~cm}^{2}
\end{aligned}
$$

Perimeter $=$ Sum of the lengths of the sides
$=15 \mathrm{~cm}+15 \mathrm{~cm}+15 \mathrm{~cm}$
$=30 \mathrm{~cm}+15 \mathrm{~cm}$
$=45 \mathrm{~cm}$
2.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 8 \mathrm{in} \cdot \cdot 6 \mathrm{in} . \\
& =\frac{1 \cdot \mathbf{x} \cdot 4 \cdot 6}{\mathrm{x} \cdot 1} \\
& =24 \mathrm{sq} . \mathrm{in} . \text { or } 24 \mathrm{in}^{2}
\end{aligned}
$$

Perimeter $=$ Sum of the lengths of the sides
$=6 \mathrm{in} .+8 \mathrm{in} .+10 \mathrm{in}$.
$=14 \mathrm{in} .+10 \mathrm{in}$.
$=24 \mathrm{in}$.
5.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot(6 \mathrm{in.}+8 \mathrm{in.}) \cdot 8 \mathrm{in.} . \\
& =\frac{1 \cdot 14 \cdot 8}{2 \cdot 1 \cdot 1} \\
& =\frac{1 \cdot \mathbf{Q} \cdot 7 \cdot 8}{\mathrm{Q} \cdot 1 \cdot 1} \\
& =56 \text { sq.in. or } 56 \mathrm{in}^{2}
\end{aligned}
$$

Perimeter $=$ Sum of the lengths of the sides

$$
=10 \mathrm{in} .+6 \mathrm{in} .+8 \mathrm{in} .+11 \mathrm{in} .
$$

$=16 \mathrm{in} .+8 \mathrm{in} .+11 \mathrm{in}$.
$=24 \mathrm{in} .+11 \mathrm{in}$.
$=35$ inches
3.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 8 \mathrm{~m} \cdot 6 \mathrm{~m} \\
& =\frac{1 \cdot \mathbf{8} \cdot 4 \cdot 6}{8 \cdot 1} \\
& =24 \mathrm{sq} \cdot \mathrm{~m} \text { or } 24 \mathrm{~m}^{2}
\end{aligned}
$$

Perimeter $=$ Sum of the lengths of the sides
$=8 m+14 m+11 m$
$=22 m+11 m$
$=33$ meters
6. \quad Area $=\frac{1}{2} \cdot b \cdot h$
$=\frac{1}{2} \cdot(10 f t+2 f t) \cdot 5 f t$
$=\frac{1 \cdot 12 \cdot 5}{2 \cdot 1 \cdot 1}$
$=\frac{1 \cdot \mathbf{2 \cdot 6 \cdot 5}}{2 \cdot 1 \cdot 1}$
$=30$ sq. ft or $30 \mathrm{ft}^{2}$

Perimeter $=$ Sum of the lengths of the sides
$=11 f t+10 f t+2 f t+7 f t$
$=21 f t+9 f t$
$=30$ feet
7.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 12 \mathrm{~cm} \cdot 12 \mathrm{~cm} \\
& =\frac{1 \cdot \mathbf{x} \cdot 6 \cdot 12}{\mathbf{8} \cdot 1 \cdot 1} \\
& =72 \mathrm{sq} \cdot \mathrm{~cm} \text { or } 72 \mathrm{~cm}^{2}
\end{aligned}
$$

Perimeter $=$ Sum of the lengths of the sides

$$
\begin{aligned}
& =12 \mathrm{~cm}+12 \mathrm{~cm}+12 \sqrt{2} \mathrm{~cm} \\
& =(24 \mathrm{~cm}+12 \sqrt{2}) \mathrm{cm}
\end{aligned}
$$

8.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 5 \mathrm{in} \cdot \cdot 2.5 \mathrm{in} . \\
& =\frac{1}{2} \cdot 5 \mathrm{in} \cdot 2 \frac{1}{2} \mathrm{in} . \\
& =\frac{1}{2} \cdot 5 \mathrm{in} \cdot \frac{5}{2} \mathrm{in.} \\
& =\frac{1 \cdot 5 \cdot 5}{2 \cdot 1 \cdot 2} \\
& =\frac{25}{4} \text { sq. in. or } 6 \frac{1}{4} \mathrm{in}^{2}
\end{aligned}
$$

Perimeter $=$ Sum of the lengths of the sides
$=5 \mathrm{in} .+3 \mathrm{in} .+6 \mathrm{in}$.
$=8 \mathrm{in} .+6 \mathrm{in}$.
$=14 \mathrm{in}$.
10.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot(t) \cdot(3 t-5) \\
& =\frac{1 \cdot(t) \cdot(3 t-5)}{2 \cdot 1 \cdot 1} \\
& =\frac{(t)(3 t)+(t)(-5)}{2 \cdot 1} \\
& =\left(\frac{3 t^{2}-5 t}{2}\right) \text { sq. units }
\end{aligned}
$$

11.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot(t+7) \cdot(t-7) \\
& =\frac{1}{2} \cdot \frac{(t+7)}{1} \cdot \frac{(t-7)}{1} \\
& =\frac{1 \cdot(t+7)(t-7)}{2 \cdot 1 \cdot 1} \\
& =\frac{(t+7)(t-7)}{2} \\
& =\frac{(t+7)(t)+(t-7)(-7)}{2} \\
& =\frac{t \cdot t+7 \cdot t+(t)(-7)+(7)(-7)}{2} \\
& =\frac{t^{2}+7 t+-7 t+-49}{2} \\
& =\frac{t^{2}+(7+-7) t-49}{2} \\
& =\frac{t^{2}+0 \cdot t-49}{2} \\
& =\frac{t^{2}+0-49}{2} \\
& =\left(\frac{t^{2}-49}{2}\right) \text { sq. units }
\end{aligned}
$$

9. \quad Area $=\frac{1}{2} \cdot b \cdot b$
$=\frac{1}{2} \cdot(8 t) \cdot(3 t)$
$=\frac{1 \cdot \mathbf{x} \cdot 4 \cdot t \cdot 3 \cdot t}{2 \cdot 1 \cdot 1}$
$=4 \cdot t \cdot 3 \cdot t$
$=4 \cdot 3 \cdot t \cdot t$
$=12 t^{2}$ sq.units
10. Pythagorean Triangle for right triangles

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 5^{2}+b^{2}=13^{2} \\
& 25+b^{2}=169 \\
& 25+b^{2}+-25=169+-25 \\
& 0+b^{2}=144 \\
& b^{2}=144 \\
& b^{2}-144=144-144 \\
& b^{2}-144=0 \\
& (b-12)(b+12)=0 \\
& b-12=0 \quad \text { or } \quad b+12=0 \\
& b-12+12=0+12 \quad b+12-12=0-12 \\
& b-0=12 \\
& b=12 \text { inches } \\
& \text { (b cannot be negative) } \\
& \text { Area }=\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 5 \mathrm{in} \cdot 12 \mathrm{in} \text {. } \\
& =\frac{1 \cdot 5 \cdot 2 \cdot 6}{2 \cdot 1 \cdot 1} \\
& =30 \mathrm{sq} . \mathrm{in} \text {. }
\end{aligned}
$$

Class \quad Date \quad Score

Unit I - The Structure of Geometry Part C - Measurement
 Lesson 3 - Triangles

Find the area and perimeter of the given triangles in exercises 1 through 3. (Note: You may first have to use the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$ to find some missing parts.

10
2.

Area: \qquad

Perimeter:

\qquad

Perimeter:

\qquad
3.

Area:
Perimeter:
4. Find the area of a triangle with base $(2 x+3)$ units and height $(4 x-2)$ units.

Area: \qquad
5. Find the area and perimeter of the given triangle.

Area: \qquad

Perimeter:

\qquad
6. Find the area and perimeter of the shaded square in the given figure.

Area: \qquad

Perimeter: \qquad
Class \quad Date \quad Score

Unit I - The Structure of Geometry Part C - Measurement
 Lesson 3 - Triangles

Find the area and perimeter of the given triangles in exercises 1 through 3. Note: You may first have to use the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$ to find some missing parts.

Area: \qquad
Perimeter: \qquad

Area: \qquad
Perimeter: \qquad
3.

Area:
Perimeter: \qquad
4. Find the area of a triangle with base $(2 x-4)$ units and height $(x-2)$ units

Area: \qquad
5. Find the area and perimeter of the given figure.

6. Find the area and perimeter of the given figure.

Area:

Perimeter:

\qquad

Area:

Perimeter:

\qquad
Class \quad Date \quad Score

Unit I - The Structure of Geometry Part C - Measurement
 Lesson 3 - Triangles

Find the area and perimeter of the given triangles in exercises 1 through 3. [Note: You may first have to use the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$ to find some missing parts.]
1.

Area:_ 84 sq. units
Perimeter: \qquad

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot \text { base } \cdot \text { height } \\
& =\frac{1}{2} \cdot(15+6) \cdot 8 \\
& =\frac{1 \cdot 21 \cdot 8}{2} \\
& =\frac{1 \cdot 21 \cdot 2 \cdot 4}{2} \\
& =21 \cdot 4 \\
& =84 \text { square units }
\end{aligned}
$$

$$
\begin{aligned}
\text { Perimeter } & =\text { Sum of lengths of the sides } \\
& =10+17+(15+6) \\
& =48 \text { units }
\end{aligned}
$$

Area:_12 sq.inches

Perimeter: 20 inches

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot \text { base } \cdot \text { height } & & \text { Perimeter }
\end{aligned}=\text { Sum of Lengths of the Sides }
$$

3.

Area:__20 sq. inches
Perimeter: $(\underline{8+\sqrt{29}}+\sqrt{61})$ units

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot \text { base } \cdot \text { height } \\
& =\frac{1}{2} \cdot 8 \cdot 5 \\
& =\frac{8 \cdot 5}{2} \\
& =\frac{2 \cdot 4 \cdot 5}{2} \\
& =4 \cdot 5 \\
& =20 \text { square units }
\end{aligned}
$$

$$
a^{2}+b^{2}=c^{2}
$$

$$
2^{2}+5^{2}=x^{2} \quad 6^{2}+5^{2}=y^{2}
$$

$$
4+25=x^{2} \quad 36+25=y^{2}
$$

$$
29=x^{2} \quad 61=y^{2}
$$

$$
\sqrt{29}=x \quad \sqrt{61}=y
$$

$$
\text { Perimeter }=\text { Sum of Lengths of the Sides }
$$

$$
\text { Perimeter }=(8+\sqrt{29}+\sqrt{61}) \text { units }
$$

4. Find the area of a triangle with base $(2 x+3)$ units and height $(4 x-2)$ units.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot \text { base } \cdot \text { height } \\
& =\frac{1}{2} \cdot(2 x+3) \cdot(4 x-2) \\
& =\frac{1 \cdot(2 x+3)(4 x-2)}{2} \\
& =\frac{2 x \cdot 4 x+3 \cdot 4 x+2 x \cdot(-2)+3 \cdot(-2)}{2} \\
& =\frac{8 x^{2}+12 x+-4 x+-6}{2} \\
& =\frac{8 x^{2}+8 x-6}{2} \\
& =\frac{2\left(4 x^{2}+4 x-3\right)}{2} \\
& =\left(4 x^{2}+4 x-3\right) \text { square units }
\end{aligned}
$$

5. Find the area and perimeter of the given triangle.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot \text { base } \cdot \text { height } \\
& =\frac{1}{2} \cdot 6 \frac{3}{4} \cdot 5 \frac{1}{3} \\
& =\frac{1}{2} \cdot \frac{27}{4} \cdot \frac{16}{3} \\
& =\frac{27 \cdot 16}{2 \cdot 4 \cdot 3} \\
& =\frac{3 \cdot 9 \cdot 4 \cdot 2 \cdot 2}{2 \cdot 4 \cdot 3} \\
& =9 \cdot 2 \\
& =18 \text { square yards }
\end{aligned}
$$

Area:_18 sq. yards

Perimeter: $\quad 21 \frac{1}{2}$ yards

$$
\begin{aligned}
\text { Perimeter } & =\text { Sum of lengths of the sides } \\
& =6 \frac{3}{4}+5 \frac{1}{3}+9 \\
& =\frac{27}{4}+\frac{16}{3}+9 \\
& =\frac{27 \cdot 3}{4 \cdot 3}+\frac{16 \cdot 4}{3 \cdot 4}+\frac{9 \cdot 12}{1 \cdot 12} \\
& =\frac{81}{12}+\frac{64}{12}+\frac{108}{12} \\
& =\frac{81+64+108}{12} \\
& =\frac{253}{12} \text { or } 21 \frac{1}{12} \text { yards }
\end{aligned}
$$

6. Find the area and perimeter of the shaded square in the given figure.

Area:_41 sq.units
Perimeter: $\underline{4 \sqrt{41} \text { units }}$
Area of Larger Square:

$$
\begin{aligned}
\text { Area } & =(5+4) \cdot(5+4) \\
& =9 \cdot 9 \\
& =81 \text { square units }
\end{aligned}
$$

$$
\begin{aligned}
& 41=c^{2} \\
& \sqrt{41}=c \\
& \text { c) Area of Shaded Square } \\
& \text { Area }=\sqrt{41} \cdot \sqrt{41} \\
& =\sqrt{41 \cdot 41} \\
& =\sqrt{1681} \\
& =41 \text { square units } \\
& \text { d) Perimeter is the sum of the lengths of } \\
& \text { the sides. } \\
& \text { Perimeter }=\sqrt{41}+\sqrt{41}+\sqrt{41}+\sqrt{41} \\
& =(1+1+1+1) \sqrt{41} \\
& =4 \sqrt{41} \text { units }
\end{aligned}
$$

Unit I - The Structure of Geometry Part C - Measurement
 Lesson 3 - Triangles

Find the area and perimeter of the given triangles in exercises 1 through 3. Note: You may first have to use the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$ to find some missing parts.
1.

$$
\begin{aligned}
& \text { Area:_ } 90 \text { sq.inches } \\
& \text { Perimeter: } \\
& \text { Area }=\frac{1}{2} \cdot \text { base } \cdot \text { height } \\
& \text { Perimeter }=\text { Sum of Lengths of the Sides } \\
& =\frac{1}{2} \cdot 12 \cdot 15 \\
& \begin{array}{l}
=21+16+12 \\
=21+28
\end{array} \\
& \begin{array}{l}
=21+16+12 \\
=21+28
\end{array} \\
& =\frac{1 \cdot 12 \cdot 15}{2} \\
& =49 \text { inches } \\
& =\frac{1 \cdot 2 \cdot 6 \cdot 15}{2} \\
& =6 \cdot 15 \\
& =90 \text { square inches }
\end{aligned}
$$

Area: $13 \frac{1}{2}$ sq. feet
Perimeter: $(14+\sqrt{34})$ feet

$$
\begin{array}{rlrl}
\text { Area } & =\frac{1}{2} \cdot \text { base } \cdot \text { height } & & \begin{array}{rlrl}
\text { Pythagorean Theorem } \\
a^{2}+b^{2} & =c^{2}
\end{array} \\
& =\frac{1}{2} \cdot 9 \cdot 3 & & \text { Two Missing Pieces: } \\
& =\frac{1 \cdot 9 \cdot 3}{2 \cdot 1 \cdot 1} & 3^{2}+4^{2} & =x^{2} \\
9+16 & =x^{2} & 3^{2}+5^{2} & =y^{2} \\
& =\frac{27}{2} \text { or } 13 \frac{1}{2} \text { square feet } & 25 & =y^{2} \\
25 & =x^{2} & 34 & =y^{2} \\
\sqrt{25} & =x & \sqrt{34} & =y \\
5 & =x
\end{array}
$$

$$
\text { Perimeter }=\text { Sum of Lengths of the Sides }
$$

$$
=(9+5+\sqrt{34}) \text { feet }
$$

$$
=(14+\sqrt{34}) \text { feet }
$$

3.

Area:__ 27 sq.sm

Perimeter: $(\underline{(15+3 \sqrt{13})} \mathrm{cm}$

$$
\begin{array}{rlrl}
\text { Area } & =\frac{1}{2} \cdot \text { base } \cdot \text { height } & \text { Pythagorean Theorem } \\
& =\frac{1}{2} \cdot 6 \cdot 9 & a^{2}+b^{2} & =c^{2} \\
& =\frac{1 \cdot 6 \cdot 9}{2} & 6^{2}+9^{2} & =c^{2} \\
& =\frac{1 \cdot 2 \cdot 3 \cdot 9}{2} & 36+81 & =c^{2} \\
& =27 \text { square } c m & 117 & =c^{2} \\
& \sqrt{117} & =c
\end{array}
$$

$$
\begin{aligned}
\text { Perimeter } & =\text { Sum of Lengths of the Sides } \\
& =6+9+3 \sqrt{13} \\
& =(15+3 \sqrt{13}) \mathrm{cm}
\end{aligned}
$$

4. Find the area of a triangle with base $(2 x-4)$ units and height $(x-2)$ units

Area: $\left(4 x^{2}+4 x-3\right)$ square units

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot \text { base } \cdot \text { height } \\
& =(2 x+3)(4 x-2) \\
& =\frac{8 x^{2}+8 x-6}{2} \\
& =\frac{8 x^{2}+8 x-6}{2} \\
& =\frac{2\left(4 x^{2}+4 x-3\right)}{2} \\
& =\left(4 x^{2}+4 x-3\right) \text { square units }
\end{aligned}
$$

5. Find the area and perimeter of the given figure.

Area: $26.46 \mathrm{~cm}^{2}$

Perimeter: 25.2 cm

$$
\begin{array}{rlrl}
\text { Area } & =\frac{1}{2} \cdot \text { base } \cdot \text { height } & \text { Perimeter } & =\text { Sum of Lengths of the Sides } \\
& =8.4+6.3+10.5 \\
& =\frac{1}{2} \cdot(8.4) \cdot(6.3) & & \\
& =\frac{(8.4)(6.3)}{2} & \\
& =\frac{2 \cdot(4.2) \cdot(6.3)}{2} & \\
& =26.46 \mathrm{~cm}^{2} &
\end{array}
$$

6. Find the area and perimeter of the given figure.

Pythagorean Theorem
a) find c.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
3^{2}+4^{2} & =c^{2} \\
9+16 & =c^{2} \\
\sqrt{25} & =c \\
5 & =c
\end{aligned}
$$

c) Perimeter is:

$$
\begin{aligned}
& \text { Perimeter }=6+3+4+\sqrt{61} \\
& \text { Perimeter }=(13+\sqrt{61}) \text { meters }
\end{aligned}
$$

Area:_ 21 sq. meters
Perimeter: $(13+\sqrt{61})$ meters
b) Find x :

$$
\begin{aligned}
a^{2}+b^{2} & =x^{2} \\
6^{2}+5^{2} & =x^{2} \\
36+25 & =x^{2} \\
61 & =x^{2} \\
\sqrt{61} & =x
\end{aligned}
$$

d) Area is half the base times the height

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \cdot \text { base } \cdot \text { height }+\frac{1}{2} \cdot \text { base } \\
& \text { Area }=\frac{1}{2} \cdot 4 \cdot 3+\frac{1}{2} \cdot 5 \cdot 6 \\
& \text { Area }=\frac{1 \cdot 4 \cdot 3}{2 \cdot 1 \cdot 1}+\frac{1 \cdot 5 \cdot 2 \cdot 3}{2 \cdot 1 \cdot 1} \\
& \text { Area }=6+15 \\
& \text { Area }=21 \text { square meters }
\end{aligned}
$$

