Geometry

Objective

Draw shapes on a coordinate grid and describe their properties.

Common Core State Standards

- 6.G. 3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.

Formative Assessment

Have students try the following problem.
If the shape is moved up two units, what coordinates describe the shape after the move?
A. Rhombus; $(-2,2),(-2,-2),(2,2)$, and $(2,-2)$
B. Rhombus; $(-4,2),(-4,-2),(6,2)$, and $(6,-2)$
C. Rectangle; $(-4,4),(-4,0),(4,4)$, and $(4,0)$
D. Rectangle; $(-2,2),(-2,-2),(6,2)$, and $(6,-2)$

Here is a problem about drawing and describing shapes in the coordinate plane.
Beth is making a record of how the furniture on her patio is positioned. She divides the patio into quadrants and uses a 4-quadrant grid to show the placement of the furniture. She has a square chair, a triangular stool, and a table shaped like a rhombus. Show how the positions and shapes of the pieces of furniture might be represented on the grid.

Introduce the problem. Then have students do the activity to solve the problem. Distribute AngLegs, graph paper, and pencils to students. Explain to students that the endpoints of the AngLegs are represented by the raised circles, not the extreme ends.

1. Have students use an AngLegs piece to show a segment connecting points $(1,2)$ and $(1,7)$. Say: This segment is one side of the square chair. Complete the chair so that it is positioned completely inside the first quadrant. Draw the shape. Discuss with students how they found the additional coordinates.

2. Have students use an AngLegs piece to show a segment connecting points $(6,-1)$ and $(6,-6)$. Say: This segment is one side of the stool. Complete the stool so that there is a right angle at $(6,-6)$.

Materials

- AngLegs ${ }^{\circledR}$ (orange and purple only: one set per group)
- 4-Quadrant Graph Paper (BLM 12; 1 per group)
- pencils (1 per group)

2. Say: One vertex of the rhombus-shaped table is at point $(-4,4)$ and another is at $(-4,-4)$. Have students connect the sides to make the rhombus. Ask: What are the other coordinates of the rhombus?

A Look Out!

Some students might have difficulty determining how to connect the points correctly. If students use diagonals to stabilize the rhombus and square, remind them that only the sides of each shape are supposed to be represented; not the diagonals.

Use AngLegs ${ }^{\circledR}$ and graph paper to model each shape in a coordinate plane. Part of the shape is shown. Name the coordinates of the vertices that complete the shape.

(Check students' work.)

1. rectangle with vertices at $(2,1)$ and (2,5)

The other vertices are at
$(5,1)$ and $(5,5)$
2. isosceles trapezoid with short base 3 units, long base 11 units

The vertices of the long base are $(-5,0)$ and $(6,0)$.

Using AngLegs, model each shape. Sketch the model. Name the vertices.

3. square in the second quadrant that has sides 5 units long

The vertices of the square are
\qquad
Students' models will vary.
4. rectangle in the third and fourth quadrants, 7 units by 4 units

The vertices of the rectangle are Students' models will vary.

Answer Key

Challenge! If a rectangle has one vertex at $(4,4)$ and its opposite vertex is at $(-5,-5)$, in what quadrants is the rectangle? Draw a picture to help.

Challenge: (Sample) The rectangle will be in all four quadrants.
\qquad
Use AngLegs ${ }^{\otimes}$ and graph paper to model each shape in a coordinate plane. Part of the shape is shown. Name the coordinates of the vertices that complete the shape.

1. rectangle with vertices at $(2,1)$ and $(2,5)$

The other vertices are at
2. isosceles trapezoid with short base 3 units, long base 11 units

The vertices of the long base are
\qquad . \qquad .

Using AngLegs, model each shape. Sketch the model. Name the vertices.

3. square in the second quadrant that has sides 5 units long

The vertices of the square are
4. rectangle in the third and fourth quadrants, 7 units by 4 units

The vertices of the rectangle are
\qquad .

Name

Challenge! If a rectangle has one vertex at $(4,4)$ and its opposite vertex is at $(-5,-5)$, in what quadrants is the rectangle? Draw a picture to help.
\qquad

