## Mathematics 700-1200

# **Diagnostic Tests**

### CONTENTS

| Instructions                              | 2           |
|-------------------------------------------|-------------|
| Mathematics 700                           | 3           |
| Mathematics 800                           | 8           |
| Mathematics 900                           | 13          |
| Mathematics 1000                          | 28          |
| Mathematics 1100                          | 48          |
| Mathematics 1200                          | 62          |
| Answer Keys (If included)                 | <b>AK 2</b> |
| Student Placement Worksheet (If included) | AK 24       |



Alpha Omega Publications®

804 N. 2nd Ave. E., Rock Rapids, IA 51246-1759 © MCMXCIX by Alpha Omega Publications, Inc. All rights reserved. LIFEPAC is a registered trademark of Alpha Omega Publications, Inc.

All trademarks and/or service marks referenced in this material are the property of their respective owners. Alpha Omega Publications, Inc. makes no claim of ownership to any trademarks and/or service marks other than their own and their affiliates', and makes no claim of affiliation to any companies whose trademarks may be listed in this material, other than their own.

#### MATHEMATICS 700-1200 Introduction

#### PLACEMENT TEST for the LIFEPAC CURRICULUM Instructions

This test is designed to aid the teacher in proper placement of the student into the LIFEPAC curriculum. It has two sections: the Student Test and the Answer Key. The Answer Key is an insert in the Student Test and may be removed when testing begins.

This is not a timed test and the student should be given an opportunity to answer each question adequately. If the student becomes bogged down and the test seems too difficult, skip to the next section. If the test is still too difficult, this child's academic skill level has been reached and testing may stop. Each test level should take no longer than one hour. Students should not use calculators for any of these tests.

Testing should begin approximately two grade levels below the student's current or just completed grade level. For example, a student entering tenth grade [1000] should begin testing at the eighth grade [800] level. This allows for proper grade level placement as well as identification of any learning gaps that the student may have.

Once the test has been administered, it is ready to be scored. The teacher or parent does all of the scoring except for those who are using one of our placement services. Use the Answer Key to mark all incorrect answers on the Student Test. Next, record the total number of **correct** answers in the box beneath the LIFEPAC number in the left hand column. When all tests have been graded, transfer the number correct by LIFEPAC to the Student Placement Worksheet on the back page of the Answer Keys. Then add the total number of points per grade level.

| Test      | Level | Test        | Level |
|-----------|-------|-------------|-------|
| 701 - 710 | 7     | 1001 - 1010 | 10    |
| 801 - 810 | 8     | 1101 - 1110 | 11    |
| 901 - 910 | 9     | 1201 - 1210 | 12    |

There are ten possible points per section. Put all answers on the blanks to the right of the questions unless instructed to do otherwise.

| 701 | 1.      | Write the number represented by the expanded form.<br>$4 \ge 100,000 + 5 \ge 1,000 + 3 \ge 100 + 6$                                                                    | 1   |
|-----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |         | Write the correct symbol to make the sentences true. $(>, <, =)$                                                                                                       | 2a. |
|     | 2.      | <b>a.</b> 8 7 <b>b.</b> 14 14 <b>c.</b> 24 29                                                                                                                          | b.  |
|     |         | Complete the table for the given sentence.                                                                                                                             | c.  |
|     |         | a - b = 25                                                                                                                                                             |     |
|     |         | a = 52 69 34                                                                                                                                                           | 3   |
|     |         | b = 3 4 5                                                                                                                                                              | 4   |
|     |         |                                                                                                                                                                        | 5   |
|     | 6.      | Find the number that makes the sentence true.<br>18 + 5 + 14 + N = 48                                                                                                  | 6   |
|     | 7       | <b>Find the sum</b> of 5 742 and 3 824                                                                                                                                 | 7.  |
|     | 8.      | Find the difference of 5,742 and 3,824.                                                                                                                                | 8.  |
|     | 9.      | Find the <i>estimated</i> answer of 492 + 220 to the nearest hundred.                                                                                                  | 9   |
|     | 10.     | Find the <i>estimated</i> answer of 6,443 – 3,861 to the nearest thousand.                                                                                             | 10  |
| 702 | 1.      | In the multiplication problem $67 \times 7 = 469$ , what is the <b>a.</b> multiplier <b>b.</b> multiplicand <b>c.</b> product ?                                        | 1a  |
|     |         |                                                                                                                                                                        | с.  |
|     | 2.      | In the division problem $75 \div 5 = 15$ , what is the                                                                                                                 | 2a. |
|     |         | a. dividend <b>b.</b> quotient <b>c.</b> divisor :                                                                                                                     | b.  |
|     | 3.      | What is the missing number in the sequence 1, 3, 9,, 81, 243?                                                                                                          | с.  |
|     |         |                                                                                                                                                                        | 3   |
|     | 4.      | What is the value of the exponential number $4^{3}$ ?                                                                                                                  |     |
|     | 5.      | What is the value of $54 \times 10^8$ ?                                                                                                                                | 4   |
|     |         |                                                                                                                                                                        | 5.  |
|     | 6       | What is the answer to $70 \times 68 =$                                                                                                                                 |     |
|     | о.<br>7 | $79 \times 66 =$<br>896 × 76 =                                                                                                                                         | 6.  |
|     | 8.      | $525 \div 19 =$                                                                                                                                                        | 7.  |
|     | 9.      | 47,352 ÷ 78 =                                                                                                                                                          | 8.  |
|     |         |                                                                                                                                                                        | 9.  |
|     | 10.     | If your classroom had 38 pupils and 1 was absent on Monday,<br>2 on Tuesday, 4 on Wednesday, 0 on Thursday, and 3 on<br>Friday, what was the average daily attendance? | 10  |

| 703 | 1.      | What is the name of AC and/or DB?                                       |                                             |
|-----|---------|-------------------------------------------------------------------------|---------------------------------------------|
|     |         | A C D B                                                                 | 1                                           |
|     | 2.      | What do we use to measure an angle?                                     |                                             |
|     |         | <b>a.</b> ruler <b>b.</b> scale <b>c.</b> protractor                    | 2.                                          |
|     | 3.      | What is the perimeter of the triangle? $4/6$                            |                                             |
|     |         | $\frac{1}{7}$                                                           | 3                                           |
|     | 4.      | What is the name of a triangle that has one angle equal to $90^{\circ}$ |                                             |
|     | _       | A D.                                                                    | 4                                           |
|     | 5.      | The name of is                                                          |                                             |
|     |         | в                                                                       |                                             |
|     |         |                                                                         | 5.                                          |
|     |         | <b>a.</b> parallelogram ABCD <b>b.</b> trapezoid ABCD                   |                                             |
|     |         | <b>c.</b> quadrilateral ABCD <b>d.</b> rectangle ABCD                   |                                             |
|     |         |                                                                         | 6                                           |
|     | 6.      | What is the sum of the angles of a quadrilateral?                       |                                             |
|     | -       |                                                                         | 7                                           |
|     | 7.<br>o | What is the diameter of a circle if the radius is 3 inches?             | 7                                           |
|     | 0.<br>9 | What is the area of a rectangle with dimensions of                      | 8                                           |
|     | J.      | 16 ft. and 18 ft.?                                                      | 9                                           |
|     |         |                                                                         |                                             |
|     | 10.     | What is the sum of the angles of a hexagon?                             | 10.                                         |
|     |         |                                                                         |                                             |
| 704 |         | 5                                                                       |                                             |
|     | 1.      | Raise $\frac{3}{9}$ to higher terms with a denominator of 54.           |                                             |
|     | -       | 45                                                                      | 4                                           |
|     | 2.      | Find the quotient of $\overline{7}$ .                                   | 1                                           |
|     | _       | 7 7                                                                     | 2                                           |
|     | 3.      | Select the correct symbol. $\overline{8}$ (<, >) $\overline{9}$ .       | <u>ــــــــــــــــــــــــــــــــــــ</u> |
|     |         | 1                                                                       | 3.                                          |
|     | 4.      | Write $2\frac{1}{5}$ as a decimal.                                      |                                             |
|     | 5       | Write 00034 as a percent                                                | 4                                           |
|     | 0.      |                                                                         | _                                           |
|     | 6.      | Show the ratio of 9 nickels to 34 pennies.                              | 5                                           |
|     |         | Ĩ                                                                       | 6                                           |
|     | 7.      | Write $64\%$ as a fraction reduced to lowest terms.                     | 0                                           |
|     |         |                                                                         | 7.                                          |
|     | 8.      | Write .13% as a decimal.                                                |                                             |
|     | 9.      | What is the decimal equivalent to the fraction $\frac{7}{8}$ ?          | 8                                           |
|     | - *     | <b>1</b>                                                                |                                             |
|     | 10.     | <b>Convert</b> 5 grams <b>to milligrams.</b>                            | 9                                           |
|     |         |                                                                         | 10                                          |
|     |         |                                                                         | 10.                                         |

| 705 | 1.             | Show how a set is written if the elements of the set are 5, 7, 9, 1                                                                     | 1. 1. <sub>.</sub> |    |
|-----|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|----|
|     | 2.             | Given $A = \{1, 2, 3, 4, 5,\}$ , a subset of A would be<br>a. $\{1, 2, 3, 4, 5, 6\}$ c. $\{0\}$<br>b. $\{1, 2, 3\}$ d. $\{2, 4, 6, 8\}$ | 2.                 |    |
|     | 3.             | The intersection of sets $A = \{3, 4, 5, 6, 7\}$ and $B = \{3, 6, 9, 12\}$ is<br>a. $\{3, 6\}$ c. $\{3, 4, 5, 6, 7, 9, 12\}$            | 3.<br>4.           |    |
|     | 4              | <b>b.</b> $\{3, 4, 5, 6, 7\}$ <b>d.</b> an empty set                                                                                    | 5.                 |    |
|     | - <del>.</del> | Write a number that is 10,000 times larger than ,0008                                                                                   | 6.                 |    |
|     | 6.             | Show 7,000,000 as a power of 10.                                                                                                        | -                  |    |
|     | 7.             | What is the greatest common factor of 24 and 64?                                                                                        | 7.                 |    |
|     | 8.             | What is the least common multiple of 20 and 28?                                                                                         | 8.                 |    |
|     | 9.             | List the prime factors of 16 using exponential notation.                                                                                | 9.                 |    |
|     | 10.            | 58 is an example of a (a. prime b. composite) number.                                                                                   | 10.                |    |
| 706 | 1.             | <b>a.</b> $\frac{3}{4}$ <b>b.</b> $9\frac{1}{3}$ <b>2. a.</b> $\frac{7}{15}$ <b>b.</b> $3\frac{7}{12}$                                  | -                  |    |
|     |                | $+\frac{7}{8}$ $+6\frac{4}{9}$ $-\frac{4}{45}$ $-1\frac{3}{4}$                                                                          | 1a.                | b. |
|     |                |                                                                                                                                         | 2a.                | b. |
|     | 3.             | Add: 21.023 + 5.6 = 4. Subtract 4.3 - 3.28 =                                                                                            | 3.                 |    |
|     | 5.             | Write the decimal fraction .07 as a common fraction.                                                                                    | 4.                 |    |
|     | 6.             | Write the decimal .255 as a common fraction in lowest terms.                                                                            | 5.                 |    |
|     | 7.             | Write the common fraction $\overline{7}$ as a decimal fraction to the nearest hundredth.                                                | 6.                 |    |
|     | 8.             | From the list of fractions and decimals, find three that are equivalent in value.                                                       | 7.                 |    |
|     |                | <b>a.</b> $\frac{5}{8}$ <b>b.</b> $\frac{1}{4}$ <b>c.</b> 0.625 <b>d.</b> $\frac{25}{40}$ <b>e.</b> .0625 <b>f.</b> $\frac{25}{64}$     | 8.                 | /  |
|     | 9.             | A radio announcer takes $2\frac{7}{8}$ minutes to play each record and                                                                  | -                  |    |
|     |                | 1 $\frac{1}{2}$ minutes to read a commercial. How long does he take to                                                                  | 9.                 |    |
|     | 10             | read a commercial and play two records?                                                                                                 |                    |    |
|     | 10.            | The first game of a double-neader lasted 2.1 hours. The second                                                                          | 10                 |    |
|     |                | game lasted only $1 - \frac{1}{5}$ hours. How much longer was the first                                                                 | 10.                |    |
|     |                | game than the second game?                                                                                                              |                    |    |

| 707 | 1.  | a.                     | $\frac{2}{3} \times \frac{4}{5} =$                                 | b.                 | 12 x 6 $\frac{1}{8}$ =                                           | 1a              | b. |
|-----|-----|------------------------|--------------------------------------------------------------------|--------------------|------------------------------------------------------------------|-----------------|----|
|     | _   |                        | 3 1                                                                | _                  | 4                                                                | 2a              | b. |
|     | 2.  | a.                     | $\overline{8} \div \overline{4} =$                                 | b.                 | $\overline{5} \div 6 =$                                          | 3a.             | b. |
|     | 3.  | a.                     | $5 \frac{2}{3} \times 1 \frac{1}{17} =$                            | b.                 | $2\frac{3}{8} \div 2\frac{5}{7} =$                               | 4a.             |    |
|     | 4.  | a.                     | $.85 \times 2.1 =$                                                 | b.                 | $41.76 \times 7.4 =$                                             | b               |    |
|     |     |                        |                                                                    | 21                 |                                                                  | 5a.             |    |
|     | 5.  | a.                     | 83.78 ÷ 2.36 =                                                     | b.                 | 3.18 ÷ .16 =                                                     | b               |    |
|     | 6.  | a                      | 3.451 x 100 =                                                      | b.                 | 7.39 ÷ 1,000 =                                                   | 6a.             |    |
|     |     | Ein du                 | ha miasina numba                                                   | _                  |                                                                  | b               |    |
|     | 7.  | 25% o                  | f 28 = N                                                           | •                  |                                                                  | 7               |    |
|     | 8.  | 20 = 5                 | 0% of N                                                            |                    |                                                                  | 8               |    |
|     | 9.  | 24 = N                 | J% of 96.                                                          |                    |                                                                  | 9.              |    |
|     | 10. | Debra<br>were          | earns a 6.5% comm<br>\$4,375. How much c                           | nission<br>lid she | . One week, her total sales<br>earn that week?                   | 10.             |    |
| 708 | 1.  | If the                 | area is 24 sq. ft. and                                             | l the le           | ngth is 8 ft., what is the width                                 | <b>?</b> 1.     |    |
|     | 2.  | If a so                | uare is 5 in. on a signal will be                                  | de, wh             | at is its perimeter?                                             | 2.              |    |
|     | 5.  | is 18%                 | %?                                                                 | e paiu             | on \$550 if the fate of interest                                 | 3.              |    |
|     | 4.  | Of the                 | e following choices,                                               | , which            | one is an equation?                                              |                 |    |
|     | -   | a. 4                   | <b>b.</b> $xy$ <b>c.</b> $14$                                      | 4 = 2 x            | 7 <b>d.</b> $(3+5) \times 8$                                     | 4               |    |
|     | 5.  | what                   | is the ratio 15:75 rec                                             | uucea              | to lowest terms:                                                 | 5.              |    |
|     | 6.  | Write                  | the proportion: For                                                | ur is to           | nine as twelve is to                                             | -               |    |
|     | 7   | twent<br>Which         | y-seven.<br>A of these is a true r                                 | roport             | ion?                                                             | 6               |    |
|     | 7.  | <b>a.</b> 6:1          | 2 = 20:30 <b>b.</b> 2:3                                            | 3 = 8:12           | <b>c.</b> $1:5 = 5:1$ <b>d.</b> $6:8 = 24:34$                    | 4 7             |    |
|     | 8.  | <b>What</b><br>1,800   | <b>is the approximate</b><br>miles <b>in</b> 3.5 hours <b>?</b>    | rate of            | travel of an airplane that goes                                  | 8               |    |
|     | 9.  | Jody j<br>wide<br>What | plans to have a picto<br>by 3 in. long. When<br>will be the width? | ure enl<br>enlarg  | arged. The picture is now 2 in.<br>ed, the length will be 42 in. | <sup>9.</sup> _ |    |
|     | 10. | The ra<br>pet sh       | atio of hamsters to g<br>op has 9 hamsters,                        | gerbils<br>how m   | in a pet shop is 1:3. If the any gerbils does it have?           | 10.             |    |

| 709 | 1.  | A selection in which every member of a large group has an equal chance of being chosen is called a                                             | 1        |    |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|
|     |     | <b>a.</b> frequency <b>b.</b> biased sample <b>c.</b> random sample <b>d.</b> grap                                                             | h        |    |
|     |     | <b>Find the following information about the numbers.</b><br>8 10 5 8 12 8 12                                                                   |          |    |
|     | 2.  | What is the mean?                                                                                                                              | 2.       |    |
|     | 3.  | What is the median?                                                                                                                            | 3 -      |    |
|     | 4.  | What is the mode?                                                                                                                              | <u> </u> |    |
|     | _   |                                                                                                                                                | 4        |    |
|     | 5.  | What is the range for the following set of numbers? $7 - 2 - 24 - 12 - 12$                                                                     | 5        |    |
|     |     |                                                                                                                                                | J        |    |
|     |     | 13 14 2 7 9 10                                                                                                                                 |          |    |
|     |     | Identify points on the coordinate axes.                                                                                                        |          |    |
|     | 6.  | Point A                                                                                                                                        | 6.       |    |
|     | 7.  | Point B                                                                                                                                        | 7.       |    |
|     | 8.  | Point C $\prec$                                                                                                                                | • –      |    |
|     |     | C+ F₅+ K                                                                                                                                       | o        |    |
|     |     | On the line graph                                                                                                                              |          |    |
|     | 9.  | If the number is 19, what is the frequency? $\frac{1}{2}$                                                                                      | 9.       |    |
|     | 10. | If the frequency is 5, what is the number? $y = \frac{1}{1920212223}$                                                                          | -<br>10  |    |
| 710 | 1.  | Write this number in expanded notation. 80,000                                                                                                 | 10       |    |
|     | 2.  | 7,062 (<,>) 6,974                                                                                                                              | 1.       |    |
|     | 3.  | <b>A quadrilateral with four sides equal and parallel.</b><br><b>a.</b> square <b>b.</b> rectangle <b>c.</b> parallelogram <b>d.</b> trapezoid | 2        |    |
|     | 4.  | Find the greatest common factor for 16 and 48.                                                                                                 | 3        |    |
|     | 5.  | The diameter of a regulation basketball hoop is 18 in. What                                                                                    |          |    |
|     |     | is the circumference of the hoop?                                                                                                              | 4        |    |
|     | 6.  | <b>a.</b> $\frac{2}{3}$ <b>b.</b> $5\frac{4}{5}$                                                                                               | 5.       |    |
|     |     | 1 2 2                                                                                                                                          | _        |    |
|     |     | + 9 - 3 15                                                                                                                                     |          |    |
|     | -   | $\frac{4}{1}$ $\frac{3}{1}$ $\frac{1}{1}$ $\frac{2}{2}$                                                                                        | 6a       | b. |
|     | 7.  | <b>a.</b> $9 \times 8$ <b>b.</b> $7 \cdot 3 = 3 \cdot 3$                                                                                       |          |    |
|     | 8.  | Find the missing term in the following equation.<br>$3:18 = \:36$                                                                              | 7a       | b. |
|     | 9.  | Write the words to this formula. $D = R \times T$                                                                                              | 8        |    |
|     | 10. | Rhonda attempted 9 field goals and made 4. What was her field goal percentage?                                                                 | 9        |    |
|     |     | Tern Dom Kercenniger                                                                                                                           | 10.      |    |

| 801 | 1.             | Write in numerals: two million, five thousand, two hundred six.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.                                 |  |
|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
|     | 2.<br>3.<br>4. | What is the position of the 5 in the number 500,493?<br>How many digits in 8,720?<br>Round 489.045 to the nearest ten thousand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.<br>3.                           |  |
|     | 5.             | How many fish did Bill Knox catch on Thursday?<br>Monday<br>Tuesday<br>Wednesday<br>Thursday<br>Friday<br>Friday<br>How many fish did Bill Knox catch on Thursday?<br>Monday<br>the formula for the formula formula for the formula for the formula for the formula for the formula formula for the formula formula formula for the formula form | <ol> <li>5.</li> <li>6.</li> </ol> |  |
|     | 0.<br>7.       | How many feet in 696 inches?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.                                 |  |
|     | 8.             | If the perimeter of a square is 272 in., what is the length of each side?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.                                 |  |
|     | 9.             | AB = 12 in., $BC = 10$ in. and $CD = 15$ in. What is the length of AD?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.                                 |  |
|     |                | A B C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |  |
|     | 10.            | A pyramid has a square base with an edge of 42 meters. Find the area of the base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.                                |  |
| 802 | 1.             | Write MDCXIV in Arabic numerals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.                                 |  |
|     | 2.             | The number 15 in the base two number system is<br>(a. $10000_2$ b. $1011_2$ c. $1111_2$ d. $1101_2$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.                                 |  |
|     | 3.             | Write the following in exponential form: $5 \times 5 \times 5 \times 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.                                 |  |
|     | 4.             | (2+6)+3=2+(6+3) is an example of the (a. associative <b>b.</b> commutative) property of addition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.                                 |  |
|     | 5.             | List three prime numbers between 16 and 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                  |  |
|     | 6.             | Write 36 in prime factorization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.                                 |  |
|     | 7.             | What is the square root of 36?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.                                 |  |
|     | 8.             | What is the lowest common denominator of $\frac{7}{8}$ , $\frac{9}{10}$ , $\frac{1}{12}$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.                                 |  |
|     | 9.             | Reduce the fraction $\frac{85}{102}$ to lowest terms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.                                 |  |
|     | 10.            | What is the next number in the number pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.                                 |  |
|     |                | $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.                                |  |

| 803 | 1.  | What is the smallest fraction equivalent to $\frac{6}{8}$ , $\frac{15}{20}$ , and $\frac{21}{28}$ ?                                            | 1   |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | 2.  | Raise the fraction $\frac{2}{7}$ to higher terms with                                                                                          | 2   |
|     |     | a denominator of 42.                                                                                                                           | 3.  |
|     | 3.  | Write the improper fraction $\frac{11}{7}$ as a mixed number.                                                                                  | 4.  |
|     | 4.  | Express 18 inches and 2 yards as a ratio.                                                                                                      |     |
|     | 5.  | Arrange in order from smallest to largest:<br>$\frac{1}{2}$ , $1\frac{2}{3}$ , $\frac{5}{6}$ , $\frac{7}{12}$ , $\frac{17}{8}$ , $\frac{1}{8}$ | 5   |
|     | 6.  | Write the fraction $\frac{1}{5}$ as a decimal.                                                                                                 | 6   |
|     | 7.  | Write $71\%$ as a fraction.                                                                                                                    | 7.  |
|     | 8.  | What is the height of a building that casts a shadow of 25 ft. at the same time of day that a stick 8 ft. long casts a shadow of 5 ft.?        | 8   |
|     | 9.  | <b>The number</b> 10 <sup>-3</sup> <b>means ( a.</b> 7 <b>b.</b> 0.001 <b>c.</b> -30 <b>d.</b> 10,000 <b>).</b>                                | 9   |
|     | 10. | If John sells \$50 worth of merchandise, he makes \$5. What is his percent of commission?                                                      | 10  |
| 804 | 1.  | Add and simplify: $\frac{2}{3} + \frac{1}{2} =$ 2. $357 \frac{4}{5}$                                                                           | 1   |
|     |     | $98 \frac{2}{3}$                                                                                                                               | 2.  |
|     |     | $+162\frac{7}{15}$                                                                                                                             |     |
|     |     | 4 4 1                                                                                                                                          | 3   |
|     | 3.  | Subtract and simplify: $\frac{1}{5} - \frac{1}{7} = 4$ . $7\frac{1}{4}$                                                                        | 4.  |
|     |     | $-5\frac{3}{5}$                                                                                                                                |     |
|     | 5.  | <b>Add:</b> 754.32 + 16.304 + 9.24 =                                                                                                           | 5   |
|     | 6.  | <b>Subtract:</b> 7.37 – 3.402 =                                                                                                                | 5   |
|     | 7.  | <b>Add and subtract:</b> 5.326 + 0.17 – 2.3904 =                                                                                               | 6   |
|     | 8.  | Round 72,048 to the nearest 10.                                                                                                                | 7   |
|     | 9.  | Write an improper fraction using the numbers 5 and 10.                                                                                         | 8.  |
|     | 10. | Change the fraction $\frac{3}{5}$ to a decimal fraction.                                                                                       | 9.  |
|     |     |                                                                                                                                                | 10. |

| 805 | 1.       | Multiply and simplify: $\frac{2}{15} \times 6 =$                                                                                          | 1   |  |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|     | 2.       | Multiply and simplify: $8\frac{2}{3} \times 6\frac{3}{4} =$                                                                               | 2   |  |
|     | 3.       | Multiply: 7,456 4. Divide: 20.1)1,616.04                                                                                                  | 3   |  |
|     |          | <u>x 0.0014</u><br>5 3                                                                                                                    | 4   |  |
|     | 5.       | Divide and simplify. $\frac{1}{8} \div \frac{1}{4} =$                                                                                     | 5   |  |
|     | 6.       | <b>Divide and simplify:</b> $4 \frac{9}{10} \div 2 \frac{5}{5} =$                                                                         | 6   |  |
|     | 7.       | If a family has an annual income of \$15,000 and budgets $\frac{1}{5}$                                                                    | 7   |  |
|     |          | of it for housing, what is the amount of money that is                                                                                    |     |  |
|     |          | reserved for housing?                                                                                                                     | 8   |  |
|     | 8.<br>9. | What number is 12 percent of 30?<br>14.72 is 23% of what number?                                                                          | 9.  |  |
|     | 10.      | What percent of 120 equals 21?                                                                                                            | 10. |  |
| 806 | 1.       | <b>Given the following numbers:</b> 19, 28, 37, 23, 17, 42, 58<br>Find the mean. <b>2.</b> Find the median. <b>3.</b> Find the deviation. | 1   |  |
|     | 4.       | <b>Given the following numbers:</b> 2, 2, 3, 6, 1, 9, 4, 2, 5, 7, 6, 8, 6, 2<br>What is the frequency distribution of 2?                  | 2.  |  |
|     |          | A box contains ton balls of like shape and size. Three are red                                                                            | 3   |  |
|     |          | two are white, and five are blue. The balls are also numbered from 1 to 10. Find the following probabilities.                             | 4   |  |
|     | 5.<br>6. | one <b>red ball</b> .<br>one <b>ball with a number</b> >5 <b>.</b>                                                                        | 5   |  |
|     | 7.       | Given the function rule $d = r \times t$ and the following table,                                                                         | 6   |  |
|     |          | Time in hours     1     2     3     4     5                                                                                               | 7   |  |
|     | 8.       | Distance 40 80 120 160 What are the missing order-pair numbers for $f(n) = 3 \times n + 2$ ?                                              |     |  |
|     |          | $\begin{array}{c c} n & 0 & 1 & 2 & 3 \\ \hline f(n) & 2 & & & & \\ \hline \end{array}$                                                   | 8   |  |
|     | 9.       | Write the ordered pair for point A.                                                                                                       | 9   |  |
|     | 10.      | <b>A school committee has</b> two girls, Mary and Jean <b>and</b> three boys,                                                             |     |  |

10. A school committee has two girls, Mary and Jean and three boys, Jim, Doug, and Allen. What is the probability of Mary or Doug being chosen by drawing to represent the committee at an assembly?

10. \_\_\_\_\_

| 807 | 1.       | <b>Select the positive integers.</b> (a. 0, 1, 2, 3, 4, b. 1, 2, 3, 4, 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |          | <b>c.</b> $\frac{1}{2}$ , $\frac{1}{3}$ , $\frac{1}{4}$ , $\frac{1}{5}$ <b>d.</b> $\frac{1}{2}$ , 1, 1 $\frac{1}{2}$ , 2, 2 $\frac{1}{2}$ .).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 2.       | Write the integers -8, 2, 0, -6, 5, 10, -15 in order from smallest to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |          | largest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 3.       | What is the absolute value of $ -32 $ ? $32 $ $4.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 4.<br>5  | Find the sum: $25 + (-11) + (-15) + 7 + (-8) + 17$ . 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 5.<br>6. | Find the product: $2 \times (-9) \times 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 7.       | Find the value of $a^3$ when $a = -3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 8.       | What are the coordinates of $a_1$ $a_2$ $a_3$ $a_4$ $a_4$ $a_5$ $a_6$        |
|     |          | (a. point A and b. point B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |          | on the graph?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 0        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 9.       | If $a = 2$ , $b = -5$ , and $c = 0$ , what is the answer to this algebraic<br>expression: $a^2b + (-3)^c - \frac{c}{ab} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 10.      | Find the missing number for a in the table to make the given 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |          | sentence true.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |          | $a - b = -1$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 808 | 1.       | Find the area of the given triangle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 2.       | Find the area of the given trapezoid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 3.<br>4. | Find the circumference of a circle with a radius of 4.1 cm.<br>Find the area of a circle with a diameter of 5 ft. $4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | -        | $\frac{1}{1} (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 - 1) (1 -$ |
|     | 5.       | Find the volume of a tank with measurements $1\frac{1}{2}$ ft., 3 ft. and 2 ft. 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 6.       | Select the area of the given prism. 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |          | <b>a.</b> $8\sqrt{2}$ ft <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |          | <b>b.</b> $12\sqrt{2}$ ft. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |          | <b>c.</b> 20 ft. <sup>2</sup> + 8 $\sqrt{2}$ ft. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 7.       | <b>Select the volume of a paint can</b> 6 in. high and $7\frac{1}{2}$ in. in diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |          | <b>a.</b> $28 \frac{1}{8} \pi \text{ in.}^3$ <b>b.</b> $45 \pi \text{ in.}^3$ <b>c.</b> $84 \frac{1}{8} \pi \text{ in.}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 8.       | <b>Convert</b> 270 ft. <sup>3</sup> <b>to cubic yards.</b> 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 9.       | <b>Select the surface area of a sphere with a radius of</b> 5 in. 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |          | <b>a.</b> 50 $\pi$ in. <sup>2</sup> <b>b.</b> $\frac{125}{3} \pi$ in. <sup>2</sup> <b>c.</b> 100 $\pi$ in. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 10       | Colort the formula for the surface area of a same 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 10.      | Select the formula for the surface area of a cone. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |          | <b>a.</b> $S = \pi r (s + r)$ <b>b.</b> $S = 2\pi r^2 + 2\pi rh$ <b>c.</b> $S = 4\pi r^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 1.                                                   | What is the distance between -32 a                                                                                                                                                                                                                           | nd +50 on the number line?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.                                                   | What is the coefficient of the term                                                                                                                                                                                                                          | $\frac{2}{3}xy?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.<br>4.                                             | Write this phrase in numbers:<br>a number divided by three plus six<br>Write this phrase in numbers:                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.<br>4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      | five less than three times a number                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.                                                   | Find the solution to $v - \frac{3}{4} =$                                                                                                                                                                                                                     | $=1\frac{3}{4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.                                                   | Find the solution to $18x + 11$                                                                                                                                                                                                                              | = 29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.                                                   | Simplify: 14xy – 6                                                                                                                                                                                                                                           | x – 7xy + 8x – 6xy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8.                                                   | <b>Solve:</b> $3x - 6 =$                                                                                                                                                                                                                                     | 2x - 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                                    | Mark is three times as ald as his si                                                                                                                                                                                                                         | tor Two ware and he was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.                                                   | a. Mark 6 yrs; sister 2 yrs c.                                                                                                                                                                                                                               | bir present ages are:<br>Mark 9 yrs; sister 3 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      | <b>b.</b> Mark 15 yrs; sister 5 yrs <b>d.</b>                                                                                                                                                                                                                | Mark 16 yrs; sister 4 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.                                                  | <b>Pam found that she could read</b> 9 pa<br>20 minutes. <b>At this rate, how long w</b><br><b>to read</b> 378 pages?                                                                                                                                        | ages of a novel in<br>vould it take her                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      | to read of o pageo.                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.                                                   | Change 1.6 to percent.                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.                                                   | Find the products of ( a. $4^2$ ) and (                                                                                                                                                                                                                      | <b>b.</b> $3^3$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.                                                   | <b>Find the area of a circle to the</b> near 8.1 cm.                                                                                                                                                                                                         | est tenth, with a radius of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4. Find the volume of a rectangular solid with lengt | olid with length 14 in.,                                                                                                                                                                                                                                     | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      | width 8 in., and height 6 in.                                                                                                                                                                                                                                | height 6 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.                                                   | Use the distributive property to fir $(x + 3) (y - 4)$ .                                                                                                                                                                                                     | d the product of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.                                                   | <b>Translate to algebraic symbols:</b> Two number is one less than the number                                                                                                                                                                                | o more than four times a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.                                                   | Write the opposites of $6, -9, 0$ .                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8.                                                   | The sum of four consecutive intege                                                                                                                                                                                                                           | ers is 18. Find the integers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.                                                   | Write the numeral 5,000,000 in pow                                                                                                                                                                                                                           | ers of ten.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.                                                  | What is the greatest common factor                                                                                                                                                                                                                           | r of 12, 18, and 30?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      | <ol> <li>1.</li> <li>2.</li> <li>3.</li> <li>4.</li> <li>5.</li> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>1.</li> <li>2.</li> <li>3.</li> <li>4.</li> <li>5.</li> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> </ol> | <ol> <li>What is the distance between -32 at</li> <li>What is the coefficient of the term</li> <li>Write this phrase in numbers:<br/>a number divided by three plus six</li> <li>Write this phrase in numbers:<br/>five less than three times a number</li> <li>Find the solution to y - <sup>3</sup>/<sub>4</sub> =</li> <li>Find the solution to 18x + 11</li> <li>Simplify: 14xy - 6</li> <li>Solve: 3x - 6 =</li> <li>Mark is three times as old as his sis<br/>seven times as old as his sister. The<br/>a. Mark 6 yrs; sister 2 yrs</li> <li>Mark 15 yrs; sister 5 yrs</li> <li>Pam found that she could read 9 pa<br/>20 minutes. At this rate, how long y<br/>to read 378 pages?</li> <li>Change 1.6 to percent.</li> <li>Find the area of a circle to the near<br/>8.1 cm.</li> <li>Find the volume of a rectangular so<br/>width 8 in., and height 6 in.</li> <li>Use the distributive property to fin<br/>(x + 3) (y - 4).</li> <li>Translate to algebraic symbols: Two<br/>number is one less than the number</li> <li>Write the opposites of 6, -9, 0.</li> <li>The sum of four consecutive integer</li> <li>Write the numeral 5,000,000 in pow</li> <li>What is the greatest common factor</li> </ol> | <ol> <li>What is the distance between -32 and +50 on the number line?</li> <li>What is the coefficient of the term <sup>2</sup>/<sub>3</sub> xy?</li> <li>Write this phrase in numbers:<br/>a number divided by three plus six</li> <li>Write this phrase in numbers:<br/>five less than three times a number</li> <li>Find the solution to y - <sup>3</sup>/<sub>4</sub> = 1 <sup>3</sup>/<sub>4</sub>.</li> <li>Find the solution to 18x + 11 = 29.</li> <li>Simplify: 14xy - 6x - 7xy + 8x - 6xy</li> <li>Solve: 3x - 6 = 2x - 9</li> <li>Mark is three times as old as his sister. Two years ago he was<br/>seven times as old as his sister. Their present ages are:<br/>a. Mark 6 yrs; sister 2 yrs c. Mark 9 yrs; sister 3 yrs<br/>b. Mark 15 yrs; sister 5 yrs d. Mark 16 yrs; sister 4 yrs</li> <li>Pam found that she could read 9 pages of a novel in<br/>20 minutes. At this rate, how long would it take her<br/>to read 378 pages?</li> <li>Change 1.6 to percent.</li> <li>Find the area of a circle to the nearest tenth, with a radius of<br/>8.1 cm.</li> <li>Find the area of a circle to the nearest tenth, with a radius of<br/>8.1 cm.</li> <li>Use the distributive property to find the product of<br/>(x + 3) (y - 4).</li> <li>Translate to algebraic symbols: Two more than four times a<br/>number is one less than the number.</li> <li>Write the opposites of 6, -9, 0.</li> <li>The sum of four consecutive integers is 18. Find the integers.</li> <li>Write the numeral 5,000,000 in powers of ten.</li> <li>What is the greatest common factor of 12, 18, and 30?</li> </ol> | 1.What is the distance between -32 and +50 on the number line?1.2.What is the coefficient of the term $\frac{2}{3}xy$ ?2.3.Write this phrase in numbers:<br>a number divided by three plus six3.4.Write this phrase in numbers:<br>five less than three times a number3.5.Find the solution to<br>$y - \frac{3}{4} = 1 \frac{3}{4}$ .5.6.Find the solution to<br>$18x + 11 = 29$ .6.7.Simplify:<br>$14xy - 6x - 7xy + 8x - 6xy$ 7.8.Solve:<br>$3x - 6 = 2x - 9$ 8.9.Mark is three times as old as his sister. Their present ages are:<br>a. Mark 6 yrs; sister 2 yrs<br>b. Mark 15 yrs; sister 5 yrs10.10.Pam found that she could read 9 pages of a novel in<br>20 minutes. At this rate, how long would it take her<br>to read 378 pages?10.11.Change 1.6 to percent.1.12.Find the area of a circle to the nearest tenth, with a radius of<br>8.1 cm.3.4.Find the volume of a rectangular solid with length 14 in.,<br>width 8 in., and height 6 in.4.5.Use the distributive property to find the product of<br>(x + 3) (y - 4).7.6.Translate to algebraic symbols: Two more than four times a<br>number is one less than the number.7.7.Write the opposites of 6, -9, 0.8.8.He sum of four consecutive integers is 18. Find the integers.8.9.Write the numeral 5,000,000 in powers of ten.9.10.What is the greatest common factor of 12, 18, and 30?10. |

| 901 | 1.  | 1                                                                                                                                                                                                                                            |    |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     |     | <b>a.</b> 2 <b>b.</b> 3 <b>c.</b> 4 <b>d.</b> $2x^3$                                                                                                                                                                                         |    |
|     | 2.  | The product in $2(a + b) + 5$ is<br>a. 2 b. $(a + b)$ c. $2(a + b)$ d. 5                                                                                                                                                                     | 2  |
|     | 3.  | Simplifying $18(x - 1) + 9$ equals<br>a. $18x - 9$ b. $18x - 18 + 9$ c. $18x + 9$ d. $18x + 27$                                                                                                                                              | 3  |
|     | 4.  | Simplifying $7.8x - 2.1x$ equalsa. $4.6x$ b. $5.7x$ c. $9.9x$ d. $10.9x$                                                                                                                                                                     | 4  |
|     | 5.  | <b>Evaluate</b> $xy + x$ for $x = 3$ and $y = 5$ .<br>a. 11 b. 13 c. 18 d. 20                                                                                                                                                                | 5  |
|     | 6.  | <b>Evaluate</b> $5a^3 - 2b + c$ for $a = 2$ , $b = 3$ , and $c = 4$ .                                                                                                                                                                        | 6  |
|     | 7.  | The meaning of $3x^2 - 4$ in words is                                                                                                                                                                                                        | 7  |
|     |     | <ul> <li>a. four less than three times the square of a number</li> <li>b. three times a number minus four</li> <li>c. four minus three times a number squared</li> <li>d. three times a number squared less four times the number</li> </ul> |    |
|     | 8.  | The meaning of $y^3$ isa. three times a numberb. a number squaredc. a number less threed. a number cubed                                                                                                                                     | 8  |
|     | 9.  | The difference of 8 - (-3) is         a. 5       b5       c. 11       d11                                                                                                                                                                    | 9  |
|     | 10. | The quotient of $\frac{12x^2}{-4}$ is                                                                                                                                                                                                        | 10 |
|     |     | <b>a.</b> 4 <b>b.</b> $-3x^2$ <b>c.</b> $8x^2$ <b>d.</b> $12x^2$                                                                                                                                                                             |    |

| 902 | 1.  | Evaluate2                                       | -2  +  1  =                       |                                                                                                                           |                                    | 1               |
|-----|-----|-------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|
|     |     | <b>a.</b> -3                                    | <b>b.</b> 0                       | <b>c.</b> 1                                                                                                               | <b>d.</b> 5                        |                 |
|     | 2.  | $\frac{R}{2} + 6 = 14$                          | <i>R</i> =                        |                                                                                                                           |                                    | 2               |
|     |     | <b>a.</b> -16                                   | <b>b.</b> 8                       | <b>c.</b> 16                                                                                                              | <b>d.</b> 40                       |                 |
|     | 3.  | <b>Evaluate</b> A                               | $=\frac{h}{2}(a+b)$ wh            | <b>nen</b> $h = 7$ , $a =$                                                                                                | = 10, and $b = 12$ .               | 3               |
|     |     | <b>a.</b> 72                                    | <b>b.</b> 77                      | <b>c.</b> 87                                                                                                              | <b>d.</b> 112                      |                 |
|     | 4.  | Nine less that <b>a.</b> $3n - 9 = 50$          | nn three times<br>)<br>)          | a number is f<br><b>b.</b> $9 - 3n = 50$                                                                                  | fifty <b>is written</b><br>0<br>50 | 4.              |
|     |     | <b>C.</b> $9 = 5n = 50$                         | J                                 | <b>u.</b> $3 + 9n = 3$                                                                                                    |                                    |                 |
|     | 5.  | The solution                                    | <b>n to</b> $\frac{-x}{3} = 4$ is | •                                                                                                                         |                                    | 5.              |
|     |     | <b>a.</b> <i>x</i> = - 12                       | <b>b.</b> <i>x</i> =              | = -4 <b>c.</b> $x =$                                                                                                      | $1\frac{1}{3}$ <b>d.</b> $x = 3$   |                 |
|     | 6.  | <b>Solve</b> $x + a$<br><b>a.</b> $b = x + a$   | = yb for $b$ .                    | <b>b.</b> $b = y - (x + y)$                                                                                               | + a)                               | 6               |
|     |     | <b>c.</b> $b = y(x + a)$                        | 1)                                | <b>d.</b> $b = \frac{x+a}{y}$                                                                                             |                                    | 0               |
|     | 7.  | The solution                                    | <b>to</b> $8(x+1) >$              | $\sim 7(x+2)$ is                                                                                                          | ·                                  |                 |
|     |     | <b>a.</b> <i>x</i> > -6                         | <b>b.</b> $x > \frac{22}{15}$     | <b>c.</b> <i>x</i> > 6                                                                                                    | <b>d.</b> <i>x</i> > 10            | 7               |
|     | 8   | The solution                                    | <b>to</b> $10(1 + 4)$             | < 0 is                                                                                                                    |                                    | 7               |
|     | 0.  | <b>a.</b> <i>y</i> < -8                         | <b>b.</b> $y < -4$                | c. $y < -\frac{2}{5}$                                                                                                     | <b>d.</b> $y < \frac{1}{4}$        |                 |
|     | 9   | The graph o                                     | f the solution                    | to 4 y  < 8                                                                                                               | is                                 | 8.              |
|     |     | a. <del>&lt;           </del><br>-7-6-5-4-3     | <b>• • • • • • • • • •</b>        | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ 6 \\ 7 \end{array} \qquad \begin{array}{c} 0 \\ 1 \\ 1 \\ -7 \end{array}$ | <b>. . . . . . . . . .</b>         | 7               |
|     |     | <b>c.</b> ← + + + + + + + + + + + + + + + + + + | -2-101234                         | <del>: : : →</del> d. <del>&lt; :</del> -7                                                                                | -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7  | <b>↓→</b><br>7  |
|     | 10. | The graph o                                     | f the solution                    | <b>to</b> $ x  + 3 >$                                                                                                     | 5 <b>is</b>                        | 9               |
|     |     | a. <del>&lt;-⊕          </del><br>-8-7-6-5-4-   | 3-2-101234                        | <mark>↓ ↓ ↓ ⊕ → b. &lt;+</mark><br>5 6 7 8 -7                                                                             |                                    | <b>↓ →</b><br>7 |
|     |     | <b>c.</b> ← <b>8</b> -7-6-5-4                   | 3-2-101234                        | 5 6 7 8 d. ←7                                                                                                             | -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7  | 7               |
|     |     |                                                 |                                   |                                                                                                                           |                                    | 10              |

| 903 | 1.  | 12 diminished by 6 tin<br><b>a.</b> $12 + 6x$ <b>b.</b> $12 - 6x$                 | mes a number $6x$                                                 | in mathematica c. $6x - 12$ d                                       | <b>l symbols is</b><br>l. $6x \div 12$ | 1  |
|-----|-----|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|----|
|     | 2.  | A boy is 6 years olde<br>In mathematical sys                                      | er than his sis<br><b>nbols, the bo</b>                           | ter, whose age<br>y <b>'s age is</b> .                              | is <i>x</i> .                          | 2  |
|     |     | <b>a.</b> 6 <i>x</i> <b>b.</b> 6 - :                                              | x                                                                 | <b>c.</b> $x + 6$ <b>d</b>                                          | l. <i>x</i> - 6                        |    |
|     | 3.  | Jay has 3 more dime<br>The equation is                                            | es than nickels<br>•                                              | s. He has 25 co                                                     | ins altogether.                        | 3  |
|     |     | <b>a.</b> 3 + d + d = 25<br><b>c.</b> n + n - 3 = 25                              |                                                                   | <ul> <li>b. n + 3 + n =</li> <li>d. 3d + n = 25</li> </ul>          | 25                                     |    |
|     | 4.  | <b>The equation for</b> a tag inches, and a per                                   | 4                                                                 |                                                                     |                                        |    |
|     |     | <b>a.</b> $q + 4q + 2q = 24$<br><b>c.</b> $q + 4q - 3q = 24$                      |                                                                   | <b>b.</b> $6q = 24$<br><b>d.</b> $24 = q - 4q + 4$                  | + 2q                                   |    |
|     | 5.  | The larger of two nu                                                              | mbers is 5 tir                                                    | nes the smaller                                                     | number.                                | 5  |
|     |     | <b>a.</b> 30 and 6 <b>b.</b> 30 a                                                 | and 24                                                            | <b>c.</b> 40 and 8 <b>d.</b>                                        | 45 and 9                               |    |
|     | 6.  | Sally has seven times is \$2.84. The number                                       | times as man<br>er of pennies                                     | y dimes as penn<br>and dimes she                                    | ies. Their value<br>has is             | 6  |
|     |     | <ul><li><b>a.</b> 2 pennies, 14 din</li><li><b>c.</b> 3 pennies, 21 din</li></ul> | nes                                                               | <ul><li><b>b.</b> 4 pennies,</li><li><b>d.</b> 5 pennies,</li></ul> | 28 dimes<br>35 dimes                   |    |
|     | 7.  | Jerry's age is three le<br>their ages is twenty-                                  | 7                                                                 |                                                                     |                                        |    |
|     |     | <ul><li>a. Jerry: 13, Larry:</li><li>c. Jerry: 17, Larry:</li></ul>               | 8<br>10                                                           | <b>b.</b> Jerry: 15, I<br><b>d.</b> Jerry: 19, I                    | Larry: 12<br>Larry: 8                  |    |
|     | 8.  | Two boys who live 1<br>each other at rates o<br><b>They will meet in</b> _        | 8                                                                 |                                                                     |                                        |    |
|     |     | <b>a.</b> 2 hrs. <b>b.</b> 3 hr                                                   | ſS.                                                               | <b>c.</b> $3\frac{1}{2}$ hrs.                                       | <b>d.</b> 4 hrs.                       |    |
|     | 9.  | A man bought two lo<br>of \$3,000 and the othe<br>for the first lot as for        | ots for the sam<br>er at a loss of s<br>the second. E             | e price. He solo<br>\$1,500, receiving<br>ach lot cost              | l one at a profit<br>5 twice as much   | 9  |
|     |     | <b>a.</b> \$5,540 <b>b.</b> \$6,0                                                 | 000                                                               | <b>c.</b> \$7,510                                                   | <b>d.</b> \$8,000                      |    |
|     | 10. | Brine is a solution of<br>of a 5% solution of b<br>evaporate to change            | salt and water<br>rine, <b>the amo</b><br>e <b>it to an 8</b> % s | . If a tube contaunt of water the colution is                       | ains 50 pounds<br>at must              | 10 |
|     |     | <b>a.</b> $2\frac{1}{2}$ lbs. <b>b.</b> 8 lb                                      | S.                                                                | <b>c.</b> 12 $\frac{1}{2}$ lbs.                                     | <b>d.</b> 18 $\frac{3}{4}$ lbs         |    |

| 904 | 1.  | The sum of $3c^2d^3 + (-5c^2d^3) + 10c^2d^3$ is                                                                                                               | 1  |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     |     | <b>a.</b> $6c^2d^3$ <b>b.</b> $8c^2d^3$ <b>c.</b> $12c^2d^3$ <b>d.</b> $18c^2d^3$                                                                             |    |
|     | _   |                                                                                                                                                               | 2. |
|     | 2.  | The polynomial $3 - 3x^2 + 4x + 8x^3$ arranged in                                                                                                             |    |
|     |     | a $-3r^2 + 4r + 8r^3 + 3$<br>b $3 + 4r - 3r^2 + 8r^3$                                                                                                         |    |
|     |     | <b>c.</b> $8x^3 - 3x^2 + 4x + 3$<br><b>d.</b> $8x^3 + 4x - 3x^2 + 3$                                                                                          |    |
|     |     |                                                                                                                                                               |    |
|     | 3.  | <b>The difference of</b> $8x^2 + 4x - 5 \text{ less } 2x^2 + 2x + 7$ <b>is</b>                                                                                | 3  |
|     |     | <b>a.</b> $6x^2 + 2x - 12$ <b>b.</b> $10x^2 + 2x + 2$                                                                                                         |    |
|     |     | <b>c.</b> $6x^2 + 2x - 14$ <b>d.</b> $5x^2 - 6x + 2$                                                                                                          |    |
|     |     | 1                                                                                                                                                             |    |
|     | 4.  | The product of $-\frac{1}{2}p(4p^3+6)$ is                                                                                                                     | 4  |
|     |     | <b>a</b> $2n^3 + 6n$ <b>b</b> $-2n^4 - 3n$ <b>c</b> $-2n^3 - 6n$ <b>d</b> $2n^3 - 3n$                                                                         |    |
|     |     | $\mathbf{u}$ $\mathbf{z} \mathbf{p}$ + $0 \mathbf{p}$ $\mathbf{v}$ $\mathbf{z} \mathbf{p}$ $0 \mathbf{p}$ $\mathbf{u}$ $\mathbf{z} \mathbf{p}$ $0 \mathbf{p}$ |    |
|     | 5.  | The quotient of $-3d^3e^4f^5 \div 9d^5e^4f^3$ is                                                                                                              | _  |
|     |     | <b>a</b> $\frac{ef^2}{1}$ <b>b</b> $\frac{-3d^2f}{1}$ <b>c</b> $\frac{f^2}{1}$ <b>d</b> $\frac{f^2}{1}$                                                       | 5  |
|     |     | $\frac{d}{3d^2}$ $\frac{d}{e}$ $\frac{d}{6d^2e}$ $\frac{d}{3d^2}$                                                                                             |    |
|     | 6.  | The difference of $a - b$ less $b - c$ is                                                                                                                     |    |
|     |     | <b>a.</b> $a - c$ <b>b.</b> $-a + 2b - c$ <b>c.</b> $a - 2b + c$ <b>d.</b> $a + b - c$                                                                        | 6  |
|     | 7.  | The expression $-6(-2a - 15)$ in simplified form is                                                                                                           |    |
|     |     | <b>a.</b> $-12a - 12$ <b>b.</b> $12a - 90$ <b>c.</b> $-12a - 30$ <b>d.</b> $12a + 90$                                                                         |    |
|     | Q   | The expression $(5d + 10n) \div (5)$ in simplified form is                                                                                                    | 7  |
|     | 0.  | The expression $(5u + 10p) \div (-5)$ in simplified form is                                                                                                   |    |
|     |     | <b>a.</b> $5d - 2p$ <b>b.</b> $-d - 2p$ <b>c.</b> $d + 2p$ <b>d.</b> $-d - \frac{-p}{2}p$                                                                     | 8  |
|     |     |                                                                                                                                                               |    |
|     | 9.  | Simplify $3x [2(x + 5) - 7x] :$                                                                                                                               |    |
|     |     | <b>a.</b> $-15x^2 + 30x$ <b>b.</b> $-36x^2 + 15x$                                                                                                             |    |
|     |     | <b>c.</b> $-36x^2 + 30x$ <b>d.</b> $27x^2 + 15x$                                                                                                              | 9  |
|     | 10  | Simplify $(87 - 10) \div (-2) + 5(7 - 1)$ .                                                                                                                   |    |
|     | 10. | <b>a.</b> z - 10 <b>b.</b> 11z <b>c.</b> z <b>d.</b> 13z - 17                                                                                                 |    |
|     |     |                                                                                                                                                               | 10 |
|     |     |                                                                                                                                                               |    |

| 905 | 1.  | The greatest common factor                                                                 | of $x^5y$ and $x^4y^2$ is                       | 1  |
|-----|-----|--------------------------------------------------------------------------------------------|-------------------------------------------------|----|
|     |     | <b>a.</b> $x^5y^2$ <b>b.</b> $x^4y$ <b>c.</b>                                              | $xy$ <b>d.</b> $x^2y$                           |    |
|     | n   | The factorization of $1/a + 7h$                                                            |                                                 | 2. |
|     | ۷.  | <b>a.</b> $2(7a + 3b)$ <b>b.</b> $7(2a + 3b)$                                              | b) c. $7a(2+b)$ d. $14(a+b)$                    |    |
|     |     |                                                                                            |                                                 | 2  |
|     | 3.  | Find the trinomial product of                                                              | <b>f</b> $(4x + 3) (-2x - 5) :$                 | 3  |
|     |     | <b>a.</b> $8x^2 + 14x - 15$ <b>b.</b>                                                      | $6x^2 - 14x - 15$                               |    |
|     |     | <b>c.</b> $-8x^2 - 26x - 15$ <b>d.</b>                                                     | $12x^2 - 26x + 15$                              |    |
|     | 4   | Find the product of $(4a + 2)$                                                             | (4a - 3).                                       | 4  |
|     | 4.  | $12a^2 = 0$ <b>b</b> $16a^2 = 0$                                                           | (4u - 5) = 0                                    |    |
|     |     | <b>a.</b> 12 <i>u</i> - 9 <b>b.</b> 10 <i>u</i> - 9                                        | <b>6 c.</b> $8u + 9$ <b>d.</b> $18u + 2u - 9$   |    |
|     | 5.  | The binomial factors of $2x^2$ -                                                           | +7x + 3 are                                     | 5. |
|     |     | <b>a.</b> $(2x + 3) (x + 1)$ <b>b.</b>                                                     | (x + 3) (2x - 1)                                |    |
|     |     | <b>c.</b> $(x + 3) (2x + 1)$ <b>d.</b>                                                     | (2x - 1) (x - 3)                                |    |
|     | 6   | <b>Factor</b> $81n^2 - 100$ .                                                              |                                                 | 6  |
|     | 0.  | $2 (94 \ 10)^2$                                                                            | (0n - 10) (0n + 10)                             |    |
|     |     | <b>d.</b> $(9/l - 10)$ <b>D.</b>                                                           | (9n - 10)(9n + 10)                              |    |
|     |     | <b>c.</b> $(81n + 10)(n - 10)$ <b>d.</b>                                                   | $(9n + 10)^{-1}$                                |    |
|     | 7.  | The factors of $2 - 98n^2$ are                                                             |                                                 | 7  |
|     |     | <b>a.</b> $-2(7n - 1)(7n + 1)$ <b>b.</b>                                                   | 7                                               |    |
|     |     | <b>c.</b> $-2(1 - 7n)(1 + 7n)$ <b>d.</b>                                                   | $-2(49n^2 - 1)$                                 |    |
|     | 0   | $T = (1 + 3 + 6)^2 + 4$                                                                    |                                                 | o  |
|     | 8.  | The factors of $16y^2 + 68y^2 + 4$                                                         | $2y \text{ are } \_$ .                          | 0  |
|     |     | <b>a.</b> $2(4y + 7)(2y + 3)$ <b>b.</b>                                                    | 4y(2y + 5)(2y + 2)                              |    |
|     |     | <b>c.</b> $(4y^2 + 14y)(4y + 3)$ <b>d.</b>                                                 | 2y(2y+7)(4y+3)                                  |    |
|     | 9.  | The formula for area is $A = la$                                                           | w.                                              | 9  |
|     |     | If a rectangle has an area of 2:                                                           | $x^2 + x - 3$ , its dimensions are .            |    |
|     |     | <b>a.</b> 1: $2x - 1$ w: $x + 3$ <b>b.</b>                                                 | l: 2 <i>x</i> + 1 w: <i>x</i> - 3               |    |
|     |     | <b>c.</b> 1: $2x - 3$ w: $x + 1$ <b>d.</b>                                                 | l: $2x + 3$ w: $x - 1$                          |    |
|     | 10  |                                                                                            | $r = far = tatal each of 2\pi l^2 + 2\pi l + c$ | 10 |
|     | 10. | A person purchased $5k + 2$ item                                                           | Its for a total cost of $35k^2 + 29k + 6$ .     |    |
|     |     | The average cost per item was $a_k + 2$ $b_k + 2 + 3$                                      | $7k \pm 2$ d $7k \pm 3$                         |    |
|     |     | $\mathbf{a}, \mathbf{b}, \mathbf{a} \in \mathbf{b}, \mathbf{b}, \mathbf{c} \in \mathbf{C}$ | $n \pm 2$ <b>u.</b> $n \pm 3$                   |    |

| 8.  | The formula for area <i>A</i> of a tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                         |    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | height <i>h</i> is $A = \frac{1}{2}(a + b)h$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |    |
|     | <b>Rewritten with</b> $\overline{a}$ as the subject of the subj | ect is                                                                                                                                    |    |
|     | <b>a.</b> $a = \frac{2Ah}{b}$ <b>b.</b> $a = \frac{A}{2h} - b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>c.</b> $a = \frac{2A+b}{h}$ <b>d.</b> $a = \frac{2A}{h} - b$                                                                           |    |
| 9.  | A person drives to a destination<br>returns over the same route at<br>three hours, <b>the distance to th</b><br><b>a.</b> 55 mi. <b>b.</b> 56 mi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on at a rate of thirty-five mph and<br>forty mph. If the round trip takes<br><b>e destination is</b><br><b>c.</b> 57 mi. <b>d.</b> 58 mi. | 9  |
| 10. | The present ages of a husband<br>seven to six. Five years ago th<br><b>Their ages now are</b><br><b>a.</b> h: 35 yrs w: 30 yrs<br><b>c.</b> h: 49 yrs w: 42 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d and wife are in the ratio of<br>he ratio was six to five.<br><b>b.</b> h: 41 yrs w: 35 yrs<br><b>d</b> . h: 56 yrs w: 49 yrs            | 10 |

| 907 | 1. | Three examples of irratio                      | nal numbers                             | are                                         | 1          |
|-----|----|------------------------------------------------|-----------------------------------------|---------------------------------------------|------------|
|     |    | <b>a.</b> $4\frac{1}{5}$ , 0.283, -81.7        | <b>b.</b> $\frac{2}{9}$ , $\sqrt{16}$ , | -6                                          |            |
|     |    | c. 0.1237285, $\sqrt{26}$ , $\frac{\pi}{2}$    | <b>d.</b> 0.3, -6.2                     | $\overline{34}$ , $\frac{1}{99}$            |            |
|     | 2. | The decimal 0.292292229                        | rounded to th                           | ne nearest                                  | 2          |
|     |    | <b>a.</b> $0.3$ <b>b.</b> $0.29$               | <b>c.</b> 0.292                         | <b>d.</b> 0.2923                            |            |
|     | 3. | <b>The graph of</b> $1 <  k  < 5$              | for integers is                         | S                                           |            |
|     |    | <b>a.</b> -7-6-5-4-3-2-1 0 1 2 3 4             | <b>⊕ + + &gt;</b><br>5 6 7 <b>b.</b> -7 | 7-6-5-4-3-2-101234567                       | 3.<br>→    |
|     |    | <b>c.</b> -7-6 -5 -4 -3 -2 -1 0 1 2 3 4        | ● + + > d. <+<br>5 6 7 d7               | 7-6-5-4-3-2-101234567                       | <b>→</b>   |
|     | 4. | $\sqrt[3]{64a^6} = $ .                         |                                         |                                             | 1          |
|     |    | <b>a.</b> $4a^3$ <b>b.</b> $4a^2$              | <b>c.</b> $8a^2$                        | d. undefined                                | T          |
|     | 5. | The indicated sum and/o                        | r difference o                          | of $2\sqrt{x} - 3\sqrt{x^3} + 5\sqrt{x}$ is | <u>_5.</u> |
|     |    | <b>a.</b> $7\sqrt{x} - 3x\sqrt{x}$             | <b>b.</b> $4\sqrt{x}$                   |                                             |            |
|     |    | <b>c.</b> $10\sqrt{x}$                         | <b>d.</b> $3\sqrt{x} - 3x^{2}$          | $\sqrt{x}$                                  |            |
|     | 6. | The difference of $2\sqrt{18y}$                | $\sqrt{3} - 3\sqrt{8y^3}$ is            |                                             | 6          |
|     |    | a. $-y\sqrt{y}$                                | <b>b.</b> $-2y\sqrt{y}$                 |                                             |            |
|     |    | <b>c.</b> $4y^2\sqrt{3y} - 6y^2\sqrt{2y}$      | <b>d.</b> 0                             |                                             |            |
|     | =  | TTI 1161 1 1                                   | $(\dots, n)/n^2$                        |                                             | 7          |
|     | 7. |                                                | $f(x + 2\sqrt{3})^{-1}$                 | 15                                          |            |
|     |    | <b>a.</b> $x^2 + 4\sqrt{3x} + 12$              | <b>b.</b> $x^2 + 12x - $                | + 12                                        |            |
|     |    | <b>c.</b> $2x + 4\sqrt{3}$                     | <b>d.</b> $x^2 + 12$                    |                                             | 8          |
|     |    |                                                | $\sqrt{96x^3}$                          |                                             | ··         |
|     | 8. | The simplified quotient of                     | of $\overline{\sqrt{2x}}$ is _          |                                             |            |
|     |    | <b>a.</b> $x\sqrt{48x}$ <b>b.</b> $4x\sqrt{3}$ | <b>c.</b> $4\sqrt{5x}$                  | <b>d.</b> $4x\sqrt{3x}$                     |            |

9. The exact irrational root (E) and the rational approximation (A) 9. \_\_\_\_\_ to the nearest tenth of  $\sqrt{8}p = 6$  are \_\_\_.

**a.** E: 
$$\frac{\sqrt{2}}{3}$$
 A: 0.5 **b.** E:  $4\sqrt{3}$  A: 6.9 **c.** E:  $12\sqrt{2}$  A: 17.0 **d.** E:  $\frac{3\sqrt{2}}{2}$  A: 2.1

**10.** Solve 
$$a - 1 = \sqrt{2b} + 3$$
 for  $b$ : \_\_\_\_.

**a.**  $b = \frac{a^2 - 2a - 2}{2}$  **b.**  $b = \frac{a\sqrt{2} + 2}{2}$  **c.**  $b = \frac{a^2 - 4}{2}$ **d.**  $b = \frac{a - \sqrt{2}}{4}$  10. \_\_\_\_\_





8.

9.

- 9. A line passes through two points, (-3, -4) and (2, 5).The equation of the line is \_\_\_\_\_.a. 7x + 9y + 57 = 0b. 5x + 5y 35 = 0c. 9x 5y 43 = 0d. 9x 5y + 7 = 0
- **10.** The equation of a line that passes through (2, 2) and (2, -3) is \_\_\_\_. 10. **a.** x - 1 = 0 **b.** 2x - 3y = 0 **c.** x - 2 = 0 **d.** x + 3 = 0



Using the comparison method, the solution set for 7. 7. the system  $\begin{bmatrix} 2x + y = 1 \\ 9x + 3y = -3 \text{ is } \end{bmatrix}$ **a.** { (0, 1) } **b.** { (2, -7) } **c.** { (-2, 5) } **d.** inconsistent equations 8. \_\_\_\_\_ 8. Using the substitution method, **the solution set for** the system  $\begin{bmatrix} 3x + y = 1 \\ y = 5x - 4 \text{ is } \end{bmatrix}$ **a.** {  $(\frac{5}{8}, -\frac{7}{8})$  } **b.** { (1, 1) } **c.** { (2, -5) } **d.** inconsistent equations A school sold 480 tickets to its play. The adult tickets cost \$2.00, 9. 9. and the children's tickets cost \$1.50 each. If \$820 was collected, the number of each type of ticket that was sold was \_\_\_\_. **a.** A: 200 C: 280 **b.** A: 180 C: 300 C: 320 **c.** A: 160 **d.** A: 150 C: 330 The sum of \$12,000 was invested, part at 12% interest and part at 10. 10. 8% interest. Twice as much money was invested at 8% as at 12%. The amount of money invested at each rate was \_\_\_\_. **a.** 8%: \$9,000 12%: \$3,000 **b.** 8%: \$8,000 12%: \$4,000 **c.** 8%: \$4,000 12%: \$8,000 **d.** 8%: \$6,000 12%: \$6,000

Solve the equation by completing the square:  $x^2 + 5x - 5 = 0$  1. 910 1. **a.**  $\frac{-5 \pm 3\sqrt{5}}{2}$  **b.**  $\frac{5\sqrt{-3}}{5}$  **c.**  $\frac{-5 - 3\sqrt{-3}}{3}$  **d.**  $\frac{-1 + 5\sqrt{-5}}{2}$ **Solve the equation using the quadratic formula:**  $2x^2 + x = 15$ 2. 2. \_\_\_\_\_ **a.**  $\{\frac{3}{5}, -15\}$  **b.**  $\{\frac{5}{2}, -3\}$  **c.**  $\{\frac{15}{2}, 1\}$  **d.**  $\{\frac{5}{2}, -2\}$ **Solve the equation by factoring:**  $6x^2 - 24 = 0$ 3. **b.**  $\{(-2, 2)\}$  **c.**  $\{(-4, 4)\}$  **d.**  $\{(2)\}$ **a.**  $\{(-4, -6)\}$ 3. \_\_\_\_\_ **Solve:** 4(3y - 2) + 5(y + 8) = 04. 4. \_\_\_\_\_ **a.**  $y = 2 \frac{14}{17}$  **b.**  $y = 1 \frac{2}{3}$  **c.**  $y = \frac{2}{3}$  **d.**  $y = -1 \frac{15}{17}$ **Find the quotient:**  $(36x^3 - 24x^2 - 18x) \div 6x$ 5. **a.**  $6x^2 - 4x - 3$ **b.**  $6x^3 - 4x^2 - 3x$ **c.**  $6x^3 + 4x^2 + 3x$ **d.**  $36x^3 - 24x^2 - 3$ 5. 6. Solve.  $\frac{d-3}{6d} + \frac{d^2+4d+2}{18d^2} =$ \_\_\_\_. **b.**  $\frac{d^2 + 4d - 1}{18d^2}$ **a.**  $\frac{d^2 + 4d + 2}{2d}$ 6. **c.**  $\frac{d^2 + 7d - 7}{18d^2}$ **d.**  $\frac{4d^2-5d+2}{18d^2}$ 7. Simplify:  $\frac{4-\sqrt{3}}{\sqrt{15}}$ **a.** 4  $\sqrt{-3(15)}$ **b.** 60  $\sqrt{-45}$ 7. c.  $\frac{4\sqrt{15}-3\sqrt{5}}{15}$ **d.**  $\frac{4\sqrt{15}+3\sqrt{15}}{15}$ Solve this system by the most convenient algebraic method. 8. x = -2y + 6

3x = 4y + 8**a.** { (4, 1) } **b.** { (-1, 4) } **c.** { (6, -3) } **d.** { (4, 8) }

8. \_\_\_\_\_

- 9. Which graph is the solution of |x| 8 > 2?

  - **d.** -12-11-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10 11 12
- 10. The area of a triangle is one-half times the base times the height. If the area is 54 sq. in. and the height is 12 in, what is the base?
  a. 21 in.
  b. 6 in.
  c. 9 in.d. 15 in.

10.

| 1001 | 1.  | The name for A                                                | $\stackrel{B}{\longrightarrow}$ is       |                                 | 1  |  |  |  |  |
|------|-----|---------------------------------------------------------------|------------------------------------------|---------------------------------|----|--|--|--|--|
|      |     | <b>a.</b> point $A$ <b>b.</b> $\vec{A}$                       | <b>c.</b> plane <i>AB</i>                | <b>d.</b> $\overrightarrow{AB}$ |    |  |  |  |  |
|      | 2.  | The name for $\int F$                                         | 7 is .                                   |                                 | 2  |  |  |  |  |
|      |     |                                                               | /                                        |                                 |    |  |  |  |  |
|      |     | <b>a.</b> point $F$ <b>b.</b> $\overrightarrow{F}$            | <b>c.</b> plane <i>P</i>                 | <b>d.</b> plane <i>F</i>        |    |  |  |  |  |
|      | 3.  | The name for $K \bullet$ is                                   | a dat V                                  | d mlana V                       | 3  |  |  |  |  |
|      |     | a. point K D. inte K                                          | <b>c.</b> dot K                          | <b>u.</b> plane K               |    |  |  |  |  |
|      | 4.  | The set of all possible po                                    | ints is                                  |                                 | 4. |  |  |  |  |
|      |     | a. space                                                      | <b>b.</b> collinear points               | _                               |    |  |  |  |  |
|      |     | <b>c.</b> coplanar points                                     | <b>d.</b> betweenness of                 | points                          |    |  |  |  |  |
|      | 5.  | Point <i>B</i> is between <i>A</i> and                        | 5.                                       |                                 |    |  |  |  |  |
|      |     | equation $AB + BC = AC$ is                                    |                                          |                                 |    |  |  |  |  |
|      |     | This sentence is the defin                                    | h collinger register                     |                                 |    |  |  |  |  |
|      |     | a. space                                                      | <b>b.</b> connear points                 | nointa                          |    |  |  |  |  |
|      |     | c. copianai points                                            | <b>u.</b> Detweetilless of               | points                          | (  |  |  |  |  |
|      | 6.  | A statement accepted wit                                      | hout proof is a                          |                                 | 6  |  |  |  |  |
|      | 0.  | <b>a.</b> bisector <b>b.</b> theorem                          | <b>c.</b> postulate                      | <b>d.</b> rav                   |    |  |  |  |  |
|      |     |                                                               | 1                                        |                                 |    |  |  |  |  |
|      | 7.  | A general statement that                                      | can be proved is a(n                     | .)                              | 7. |  |  |  |  |
|      |     | <b>a.</b> axiom <b>b.</b> theorem                             | c. postulate                             | d. ray                          |    |  |  |  |  |
|      |     |                                                               |                                          |                                 |    |  |  |  |  |
|      | 8.  | The following statement                                       | 8                                        |                                 |    |  |  |  |  |
|      |     | <b>a.</b> Through any two differ                              |                                          |                                 |    |  |  |  |  |
|      |     | not on the line.                                              |                                          |                                 |    |  |  |  |  |
|      |     | c. If two planes intersect, then their intersection is a line |                                          |                                 |    |  |  |  |  |
|      |     | <b>d.</b> One and only one of th                              | e following is true.                     | a = b, a > b, a < b             |    |  |  |  |  |
|      |     | 5                                                             | 0                                        |                                 | 9. |  |  |  |  |
|      | 9.  | The line through <i>A</i> and <i>B</i>                        | is $A\overrightarrow{B}$ . The length of | segment $\overline{AB}$ is $AB$ | 3. |  |  |  |  |
|      |     | The ray starting at A and passing through B is $\vec{AB}$ .   |                                          |                                 |    |  |  |  |  |
|      |     | These descriptions are of                                     | •                                        |                                 |    |  |  |  |  |
|      |     | a. undefined terms                                            | <b>b.</b> defined to                     | erms                            |    |  |  |  |  |
|      |     | c. postulates                                                 | <b>d.</b> theorems                       |                                 |    |  |  |  |  |
|      | 10  | For any two points only o                                     | 10.                                      |                                 |    |  |  |  |  |
|      | 10. | A line is straight. Two pla                                   | line.                                    |                                 |    |  |  |  |  |
|      |     | These descriptions are of                                     |                                          |                                 |    |  |  |  |  |
|      |     | a. undefined terms                                            | <b>b.</b> defined to                     | erms                            |    |  |  |  |  |
|      |     | c. postulates                                                 | <b>d.</b> theorems                       |                                 |    |  |  |  |  |

1002 Some roses are red or some violets are blue **is an example of** \_\_\_\_\_. 1. 1. **a.** conjunction **b.** disjunction **c.** conditional **d.** intersection 2. If a point lies on a line, then the line contains the point. 2. The converse of this statement is "If a line contains a point, then the point lies on the line." Converse Using the truth table, this statement is \_\_\_\_. р q  $q \rightarrow p$ **a.** true Т Т Т **b.** false Т F Т **c.** sometimes true or false F Т F **d.** neither true nor false F F Т 3. **Choose from** (a. deductive reasoning b. inductive reasoning). 3. / 1) reasoning is making a general conclusion based on specific examples, and 2) \_\_\_\_\_ is making a conclusion by fitting a specific example into a general statement. 4. P Given: 4. **Conclusion:**  $l_1$  and  $l_2$  intersect only at point *P*. The general principle that justifies the conclusion is \_\_\_\_. **a.** definition of midpoint **b.** definition of bisector **c.** theorem: if two lines intersect, their intersection is one point **d.** postulate: if a plane contains a line, it contains the point on the line **Given:** *l* is in plane *M* 5. 5. *t* is on line *l* **Conclusion:** *t* is in plane *M*. The general principle that justifies the conclusion is \_\_\_\_. **a.** postulate: a line contains at least two points **b.** postulate: if a plane contains a line, it contains the point of the line **c.** theorem: if two lines intersect, then one plane contains both lines **d.** definition of line segment In a two column proof, the statement of the theorem is \_\_\_\_. 6. 6. **b.** preceded by *then* **a.** not essential to the proof **c.** includes a lettered figure d. written in *if-then* form 7. The given conditions of a proof are \_\_\_\_. 7. **a.** the part you want to prove **b.** always postulates **c.** the hypothesis of the statement; **d.** not expressed in terms of letters the part that follows the *if* or numerals used in the figure The to prove part of a proof is the \_\_\_\_. 8. **a.** part that follows *if* **b.** second part of a 2-column proof **c.** follows the word *then;* **d.** actual proof 8. the part you want to prove

**9. Given:** *a* = *b* 

a ≠ c

**Prove:**  $b \neq c$ 

#### The indirect proof is \_\_\_\_.

- **a.** Suppose b = c. Then a = c by the transitive property. But we know that  $a \neq c$ . This statement is a contradiction. Therefore, our supposed relationship is false, and its negation is true.
- **b.** Suppose a = c. Then b = c. But we know that a = b and not  $a \neq c$ . Therefore,  $b \neq c$ .
- **c.** Suppose a > 25, such as a = 26. Then 2(26) < 51 or 52 < 51. This is a contradiction, so a > 25 is false and a < 25 is true.
- **d.** Suppose a = 2. Then  $(2)^2 + 2 = 8$ , which means 6 = 8. This is a contradiction because 8 = 8. Therefore, a = 2 is false and  $a \neq 2$  is true.

10.

10. A triangle cannot have two right angles. Suppose a triangle has two right angles. Then the sum of the angles would be more than 180°, but this fact contradicts the fact that the sum is 180°. Therefore, that a triangle cannot have two right angles is true. The theorem for this indirect proof is \_\_\_\_.
a. Given: an isosceles triangle

- a. Given: an isosceles triangle To Prove: an isosceles triangle cannot have two right angles
  b. Given: the sum of the angles of a triangle equals 180°, and a right angle equals 90°
  To Prove: a right triangle cannot have two right angles
  c. Given: a triangle
  To Prove: a triangle has 180°
- To Prove: a triangle has 180°
  d. Given: the sum of the angles of a triangle equals 180°
  To Prove: a right angle equals 90°

| 1003 |             | /                                  |                                        |                                                | 1                                |
|------|-------------|------------------------------------|----------------------------------------|------------------------------------------------|----------------------------------|
|      | 1.          | The angle                          | is a(n) angle.                         |                                                |                                  |
|      |             | <b>a.</b> 80°                      | <b>b.</b> obtuse                       | <b>c.</b> right <b>d.</b> acute                |                                  |
|      | 2.          | In the diagram, r                  | $n \ \angle ABC = 15^{\circ} 10' \ 12$ | 2″ A                                           | 2                                |
|      |             | and m $\angle CBD =$               | 31° 52′ 48″.                           | × Correction                                   |                                  |
|      |             | The measure of                     | $\angle ABD = \_$ .                    |                                                |                                  |
|      |             |                                    |                                        |                                                |                                  |
|      |             |                                    |                                        | В 🖉 👘                                          |                                  |
|      |             | <b>a.</b> 16° 42′ 36″              | <b>b.</b> 47° 2′ 50″ <b>c.</b> 4       | 7° 3′ <b>d.</b> 47° 13′                        |                                  |
|      | 3.          | $\angle A$ and $\angle B$ are s    | upplementary. If $\angle$              | $A = 55^{\circ} 28',$                          | 3                                |
|      |             | then $\angle B = .$                |                                        |                                                |                                  |
|      |             | <b>a.</b> 35° 28′                  | <b>b.</b> 44° 32′                      | <b>c.</b> 124° 32′ <b>d.</b> 125° 2            | 8'                               |
|      | 4.          | $\angle V$ and $\angle W$ are      | vertical angles. If                    | $\angle V = 72^{\circ}$ , then $\angle W =$    | • 1                              |
|      |             | <b>a.</b> 18°                      | <b>b.</b> 28°                          | <b>c.</b> $72^{\circ}$ <b>d.</b> $108^{\circ}$ | - 4                              |
|      | 5.          | Planes that have                   | no point in commor                     | n are called planes.                           | 5.                               |
|      |             | a. equivalent                      | <b>b.</b> perpendicular                | <b>c.</b> similar <b>d.</b> parall             | el                               |
|      | 6.          | A line that inters                 | ects two or more co                    | planar lines in different                      | 6                                |
|      |             | points is called a                 | ·                                      |                                                |                                  |
|      |             | a. transversal                     | <b>b.</b> perpendicular                | <b>c.</b> parallel <b>d.</b> skew              | line                             |
|      | 7           | Triangle ABC is                    | $^{B}\Lambda$                          |                                                | 7                                |
|      | /.          | a(n) triangle                      | 4/                                     | $\Lambda^4$                                    | /                                |
|      |             |                                    | $A \square$                            | $\sum_{C}$                                     |                                  |
|      |             | a. scalene                         | <b>b.</b> equilateral                  | <b>c.</b> right <b>d.</b> isosce               | les                              |
|      |             |                                    | -<br>-                                 | $\Lambda V$                                    |                                  |
|      | 8.          | $\triangle$ UVW is a(n) _          | _ triangle.                            | 40°                                            | 8                                |
|      |             |                                    | $\bigwedge$                            | 7                                              |                                  |
|      |             | a a susila tanal                   | $U \leq 60^{\circ}$                    | $(80^{\circ})$ W                               |                                  |
|      |             | a. equilateral                     | b. acute                               | <b>c.</b> obtuse <b>a.</b> right               |                                  |
|      | 9.          | <b>Given:</b> $m \angle CBL$       | $D = m \angle DBE$                     | C                                              | 9                                |
|      |             | <b>Prove:</b> $m \angle ABC$       | $C + m \angle DBE = 180^{\circ}$       | A B D                                          | ··                               |
|      |             | The proof is                       |                                        | E                                              |                                  |
|      |             | Statement                          | Reason                                 | <u>Statement</u>                               | Reason                           |
|      | <b>a.</b> 1 | . BC and BE                        | 1. Given                               | <b>b.</b> 1. $DB \perp CE$                     | 1. Given                         |
|      | n           | intersect at B $(ABC / CBD)$       | 2 Exterior                             |                                                | 2 l's form                       |
|      | 2           | are $2 \text{ MBC}, 2 \text{ CDD}$ | sides in                               | $\angle CDD, \angle DDL$<br>rt $\angle s$      | rt. $\angle$ 's                  |
|      |             | supplementary                      | opposite rays                          | 3. m $\angle CBD = m \angle DBE$               | 3. all rt. $\angle$ 's           |
|      | 3           | $m \angle CBD$                     | 3. Two ∠'s supple-                     | 4. $\angle ABC$ , $\angle CBD$                 | 4. Exterior sides                |
|      |             | $= m \angle DBE$                   | mentary to                             | supplementary                                  | in opposite                      |
|      | А           |                                    | same $\angle =$ .                      | 5 m / ADC                                      | rays                             |
|      | 4           | $are$ $\angle CDU, \angle ABE$     | 4. Same as                             | $\frac{1}{100} + m / CRD$                      | 5. Demittion of<br>supplementary |
|      |             | supplementary                      | 5 kp 2                                 | = 180°                                         |                                  |
|      | 5           | $m \angle ABC$                     | 5. Same as                             | 6. m $\angle ABC + m$                          | 6. Substitution                  |
|      |             | $= m \angle ABE$                   | Step 3                                 | $\angle DBE = 180^{\circ}$                     |                                  |
|      |             |                                    |                                        |                                                | I                                |

| Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reason                      |              | Statement                                                                                           |                         | Reason                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|-----------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------|
| <b>c.</b> 1. $m \angle CBD = \angle DBE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. Given                    | <b>d.</b> 1. | $m \angle CBD = m \angle DBE$                                                                       | 1.                      | Given                                                               |
| 2. $\angle ABE$ , $\angle DBE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. Exterior                 | 2            | $\angle ABC, \angle CBD$                                                                            | 2.                      | Exterior                                                            |
| are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sides in                    |              | are supple-                                                                                         |                         | sides in                                                            |
| supplementary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | opposite rays               |              | mentary                                                                                             |                         | opposite rays                                                       |
| 3  m/ABF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 Definition of             | З            | m / ABC                                                                                             | 3                       | Definition                                                          |
| $\frac{1}{2}$ $\frac{1}$ | supplementary               | ,            | $m \ge MDC$                                                                                         | <b>J</b> <sup>3</sup> . | of supple                                                           |
| $+ \Pi \succeq DDE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | supplementary               | /            | $+ \Pi \angle CDD$                                                                                  |                         | of supple-                                                          |
| $= 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\angle$ s                  |              | $= 180^{\circ}$                                                                                     |                         | mentary $\angle$ 's                                                 |
| 4. m $\angle ABE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4. Substitution             | 4.           | $m \angle ABC$                                                                                      | 4.                      | Substitution                                                        |
| $+ m \angle CBD = 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |              | $+ m \angle DBE = 180^{\circ}$                                                                      |                         |                                                                     |
| 10 Cincer A DCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |              | XT                                                                                                  | Ŷ                       | • 10                                                                |
| 10. Given: $\triangle KSI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | 1000         | 4 3 5                                                                                               |                         | 10.                                                                 |
| <b>Prove:</b> $m \ge 1 + m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $n \angle 2 + m \angle 3 =$ | = 180°       |                                                                                                     |                         |                                                                     |
| The proof is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |              | $R \swarrow 1$ 2                                                                                    | 7                       | S                                                                   |
| Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reason                      |              | Statement                                                                                           |                         | Reason                                                              |
| <b>a.</b> 1. Through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. Auxiliary                | <b>b.</b> 1. | Through                                                                                             | 1.                      | Auxiliary                                                           |
| T draw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | line                        |              | T draw                                                                                              |                         | line                                                                |
| $\overrightarrow{XY}$ ++ $\overrightarrow{RS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |              | $\overrightarrow{XY} \mid \mid RS$                                                                  |                         |                                                                     |
| 2. m $\angle XTS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. Exterior sides           | 2.           | rt. isosceles                                                                                       | 2.                      | Given                                                               |
| $+ m \angle 5 = 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in opposite ray             | 'S           | $\triangle RST$                                                                                     |                         |                                                                     |
| 3. m $\angle XTS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3. Angle                    | 3.           | RT = ST                                                                                             | 3.                      | Definition of                                                       |
| $= m \angle 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | addition                    |              |                                                                                                     |                         | isosceles $\triangle$                                               |
| $+ m \angle 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | theorem                     | 4.           | $\angle 3$ is rt                                                                                    | 4.                      | Definition of                                                       |
| 4. m $\angle 4$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4. Substitution             | -            | $\angle = 90^{\circ}$                                                                               | -                       | rt∠                                                                 |
| $m \ge 3 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | 5.           | $m \angle l =$                                                                                      | 5.                      | Base $\angle$ 's of                                                 |
| $m \ge 5 = 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E If lines                  | 6            | $m \angle 2$                                                                                        | 6                       | 1sosceles $\triangle =$                                             |
| 5. If $\angle 1 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | thon                        | 0.           |                                                                                                     | 0.                      | Acute $\geq$ s of it.                                               |
| $m \neq 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alternate                   |              | mentary                                                                                             |                         | mentary                                                             |
| $m \neq 2 =$<br>m $\neq 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | interior $\angle s =$       | 7            | $m \neq 1 + m \neq 2$                                                                               | 7                       | Angle                                                               |
| 6. $m \angle 1 + m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. Substitution             | 7.           | $+ m \angle 3 = 180^{\circ}$                                                                        |                         | addition                                                            |
| $\angle 2 + m \angle 3 = 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |              |                                                                                                     |                         | theorem                                                             |
| Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reason                      |              | Statement                                                                                           |                         | Reason                                                              |
| <b>c.</b> 1. $\triangle$ <i>RST</i> with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. Given                    | <b>d.</b> 1. | Through T draw                                                                                      | 1.                      | Auxiliary                                                           |
| exterior $\angle$ 's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |              | $\widetilde{XY} \mid \mid RS$                                                                       |                         | line                                                                |
| 4 and 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | 2.           | $m \angle 1 = m$                                                                                    | 2.                      | If two     lines                                                    |
| 2. $m \angle 1 + m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Sum of                   |              | $\angle 4, m \angle 2$                                                                              |                         | are cut by a                                                        |
| $\angle 2 + m \angle 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | measures                    |              | $= m \angle 5$                                                                                      |                         | transversal,                                                        |
| $= 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of $\angle$ 's of           |              |                                                                                                     |                         | then correspond-                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\triangle = 180^{\circ}$   | •            | ( 1/77.0                                                                                            | •                       | $\operatorname{ing} \angle \operatorname{s} \operatorname{are} = .$ |
| 3. m $\angle 3 + m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. Exterior                 | 3.           | $m \angle XTS +$                                                                                    | 3.                      | Exterior sides                                                      |
| $\angle 4 + m \angle 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sides in                    | А            | $m \angle 5 = 180^{\circ}$                                                                          |                         | in opposite rays                                                    |
| $= 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | opposite rays               | 4.           | $ \begin{array}{c} \text{III} \ \angle \ AIS + \\ \text{m} \ \angle \ 2 - 180^{\circ} \end{array} $ |                         | 4. Substitution                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | 5            | $\frac{111}{2} = 100^{\circ}$                                                                       |                         | 5 Angle addition                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | 5.           |                                                                                                     |                         | theorem                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |              | $\angle 4 + \angle 3$                                                                               |                         | theorem                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | 6.           | $\angle 2 + \angle 3$                                                                               |                         | 6. Substitution                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |              | $+ \angle 4 = 180^{\circ}$                                                                          |                         |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | 32           |                                                                                                     |                         |                                                                     |



| 5. | <b>Given:</b> $\angle S = \angle T$                               | -                         |          | S T                                                                 | 5                           |
|----|-------------------------------------------------------------------|---------------------------|----------|---------------------------------------------------------------------|-----------------------------|
|    | RV = UV                                                           |                           | A        | × v                                                                 |                             |
|    | <b>Prove:</b> $SR = TU$                                           |                           |          | $1 \sim 2$                                                          |                             |
|    | The proof is                                                      |                           |          |                                                                     |                             |
|    |                                                                   |                           |          |                                                                     |                             |
|    |                                                                   |                           |          |                                                                     |                             |
|    | R                                                                 |                           |          |                                                                     |                             |
|    | Statement                                                         | Reason                    |          | Statement                                                           | Reason                      |
| a. | 1 $\angle S$ , $\angle T$ are                                     | 1. Given                  | b.       | 1. $\angle S = \angle T$                                            | 1. Given                    |
|    | rt. $\angle$ 's $SV = TV$                                         |                           |          | RV = UV                                                             |                             |
|    | $2.  \angle 1 = \angle 2$                                         | 2. Vertical               |          | 2. $\angle 1 = \angle 2$                                            | 2. Vertical                 |
|    | 3 $\land RSII \simeq \land IITV$                                  | $\angle$ s are =.         |          | 3 $\land RSV \simeq \land IITV$                                     | $\angle$ s are =.           |
|    | 4. SR = TU                                                        | 4. CPCTE                  |          | 4. SR = TU                                                          | 4. CPCTE                    |
|    | Statement                                                         | Reason                    |          | Statement                                                           | Reason                      |
| c. | 1. $\angle S = \angle T$                                          | 1. Given                  | d.       | 1. $\angle S = \angle T$                                            | 1. Given                    |
|    | V is midpoint                                                     |                           |          | RV = UV                                                             |                             |
|    | $\frac{01 \text{ KI}}{2 \text{ (1 = (2))}}$                       | 2 Vertical                |          | $US \perp SK$<br>RT $\perp$ TH                                      |                             |
|    | <b>_</b> , <u>_</u> <u>_</u> <u>_</u> <u>_</u>                    | $\angle$ 's are =.        |          | 2. $\angle S$ is rt. $\angle$                                       | 2. $\perp$ lines            |
|    | 3. $RV = TV$                                                      | 3. Definition             |          | $\angle T$ is rt. $\angle$                                          | form rt $\angle$ 's.        |
|    |                                                                   | of                        |          | 3. $\angle S = \angle T$                                            | 3. All rt $\angle$ 's =.    |
|    | $\Lambda \wedge RSV \simeq \wedge \Pi TV$                         | $\frac{1}{4}$ SSA         |          | 4. $\angle 1 = \angle 2$                                            | 4. Vertical $\angle$ 's     |
|    | 4. $\Delta RSV = \Delta UIV$<br>5. $SR = TU$                      | 5. CPCTE                  |          | 5. $\triangle RSV \cong \triangle UTV$                              | 5. HA                       |
|    |                                                                   |                           |          | 6. SR = TU                                                          | 6. CPCTE                    |
|    |                                                                   |                           |          |                                                                     |                             |
| 6. | <b>Given:</b> $RT = ST$                                           | MT = NT                   |          |                                                                     |                             |
|    | <b>Prove:</b> $\angle RNT = 1$                                    | ightarrow SMT             |          |                                                                     | 6.                          |
|    | The proof is                                                      | T                         |          | T                                                                   | Т                           |
|    |                                                                   | $\bigwedge^{I}$           |          | $\bigtriangleup$                                                    | $\wedge$                    |
|    |                                                                   |                           |          | / × ;                                                               | $\times$                    |
|    | М                                                                 |                           |          | $f \rightarrow \sum_{x} \langle$                                    | f                           |
|    | 1/1                                                               |                           |          |                                                                     |                             |
|    | R                                                                 | s                         |          | R                                                                   | $\mathcal{A}_{\mathcal{A}}$ |
|    | Statement $1 PT - ST$                                             | Reason                    | <u> </u> | 1 PT - ST                                                           | Reason S                    |
| d. | 1. $KI = SI$<br>SM + TR                                           | 1. Given                  | υ.       | 1. $KI = 5I$<br>/ $TRN = / TSM$                                     | I. Given                    |
|    | $RN \perp TS$                                                     |                           |          | 2. $\angle T = \angle T$                                            | 2. Reflexive                |
|    | 2. $\angle TMS$ is rt. $\angle$ .                                 | 2. $\perp$ lines          |          | 3. $\triangle$ <i>RTN</i> $\cong \triangle$ <i>STM</i>              | 3. AAS                      |
|    | $\angle$ TNR is rt. $\angle$ .                                    | form rt. $\angle$ 's      |          | 4. $\angle RNT = \angle SMT$                                        | 4. CPCTE                    |
|    | 3. $\angle I = \angle I$<br>$A \wedge RTN \simeq \wedge STM$      | 3. Reflexive $4 H \Delta$ |          |                                                                     |                             |
|    | 5. $\angle RNT = \angle SMT$                                      | 5. CPCTE                  |          |                                                                     |                             |
|    | Statement                                                         | Reason                    |          | Statement                                                           | Reason                      |
| c. | 1. $MT = NT$                                                      | 1. Given                  | d.       | 1. $RT = ST$                                                        | 1. Given                    |
|    | KN = SM                                                           | 2 Reflevivo               |          | MI = NT                                                             | 2 Reflevive                 |
|    | $2.  \angle I = \angle I$ $3.  \triangle RTN \cong \triangle STM$ | 3. SSA                    |          | $2. \ \angle I - \angle I$ $3. \ \triangle RTN \cong \triangle STM$ | 3. SAS                      |
|    | 4. $\angle RNT = \angle SMT$                                      | 4. CPCTE                  |          | 4. $\angle RNT = \angle SMT$                                        | 4. CPCTE                    |
|    |                                                                   |                           |          |                                                                     |                             |

| 7. | <b>Given:</b> $\angle DBC =$<br><b>Prove:</b> $\angle ABC > ABC$ | $\angle RST$<br>$\angle RST$                         | R                                       | R                     |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------------|--|--|--|
|    | Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reason                                               | Statement                               | J Reason              |  |  |  |
| a. | $1  \angle DBC = \angle RST$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. Given <b>b</b>                                    | • 1. $\angle$ DBC = $\angle$ RST        | 1. Given              |  |  |  |
|    | 2. $\angle ABC = \angle DBC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2. $\angle$ addition                                 | 2. $\angle ABC = \angle DBC$            | 2. $\angle$ addition  |  |  |  |
|    | $+ \angle ABD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | theorem                                              | $+ \angle ABD$                          | theorem               |  |  |  |
|    | 3. $\angle ABC > \angle DBC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3. If $a = b + c$<br>and $c > 0$ ,<br>then $a > b$ . | 3. $\angle ABD < \angle RST$            | 3. Substitution       |  |  |  |
|    | 4. $\angle ABC > \angle RST$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4. Substitution                                      |                                         |                       |  |  |  |
|    | Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reason                                               | Statement                               | Reason                |  |  |  |
| c. | 1. $\angle DBC = \angle RST$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. Given <b>d</b>                                    | $\bullet  1. \ \angle DBC = \angle RST$ | 1. Given              |  |  |  |
|    | 2. $\angle ABC = \angle ABD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2. $\angle$ addition                                 | 2. $\angle ABC = \angle ABD$            | 2. $\angle$ addition  |  |  |  |
|    | $+ \angle DBC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | theorem                                              | $+ \angle DBC$                          | theorem               |  |  |  |
|    | 3. $\angle ABC > \angle ABD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3. If $a = b + c$                                    | 3. $\angle ABC = \angle ABD$            | 3. Substitution       |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and $c > 0$ ,                                        | $+ \angle RST$                          |                       |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | then $a > b$ .                                       | 4. $\angle ABD < \angle RST$            | 4. If $a = b + c$ and |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                         | c > 0, then $a > b$ . |  |  |  |

8. The longest segment shown in the figure is \_\_\_\_.

**a.**  $\overline{AB}$ 



#### 8.

9. A true statement about a parallelogram is \_\_\_\_.

**b.** *BD* 

- **a.** A parallelogram is not a quadrilateral.
- **b.** The diagonals of a parallelogram bisect each other.
- **c.** No two angles of a parallelogram are equal.
- **d.** A parallelogram is a type of trapezoid.

#### 10. A true statement about a trapezoid is \_\_\_\_.

- a. A trapezoid can be a rectangle.
- **b.** A trapezoid has eight midpoints.
- c. A trapezoid always has perpendicular diagonals.
- **d.** A trapezoid has two bases that are parallel, two legs that are not parallel, and a median.

10.

9.

35

7.








 9. The length of x is \_\_\_\_.
 9. \_\_\_\_\_

 a. 1
 b.  $2\frac{1}{4}$  

 c. 3
 d. 4

 10. The length of x is \_\_\_\_.
 8

 a. 4
 b. 8

 c. 10
 d. 12











**9. Prove:** The diagonals of a square are perpendicular.

The proof is \_\_\_\_.

is \_\_\_\_\_ 
$$C(a, a)$$
  
=  $\sqrt{c^2 + d^2}$ 

**a.** 
$$AD = \sqrt{c^2 + d^2}$$
  
 $BC = \sqrt{(b + c - b)^2 + d^2} = \sqrt{c^2 + d^2}$   
 $AB = \sqrt{b^2} = b$   
 $CD = \sqrt{(b + c - c)^2 + (d - d)^2} = \sqrt{b^2} = b$ 

- **b.**  $AC = \sqrt{(-a)^2 + b^2} = \sqrt{a^2 + b^2}$  $BD = \sqrt{a^2 + b^2}$
- c.  ${}^{m}AC = \frac{a \cdot 0}{a \cdot 0} = 1$   ${}^{m}AC \stackrel{\bullet m}{=} BD = -1$  ${}^{m}BD = \frac{a \cdot 0}{0 \cdot a} = -1$   $\therefore \overline{AC} \perp \overline{BD}$
- **d.** *M* is midpoint of  $\overline{AC}$  and midpoint of  $\overline{BD}$ .

$${}^{m}AD = \frac{2k}{2j \cdot b} \qquad {}^{m}AB = 0$$
$${}^{m}BC = \frac{2k}{2j \cdot b} \qquad {}^{m}DC = \frac{2k \cdot 2k}{2j \cdot 2j + b} = 0$$
$${}^{\overline{AD}} + {}^{\overline{BC}} \qquad {}^{\overline{AB}} + {}^{\overline{DC}}$$

: *ABCD* is a parallelogram.

The proof is \_\_•

**a.** 
$${}^{m}AB = \frac{0}{a} = 0$$
$${}^{m}CD = \frac{0}{b-d} = 0$$

Slopes are equal, ∴ segments | |.

b. 
$$MN = \sqrt{\left(\frac{a+b}{2} - \frac{d}{2}\right)^2} = \frac{a+b-d}{2}$$
$$AB = \sqrt{a^2} = a$$
$$CD = \sqrt{(b-d)^2} = b-d$$
$$MN = \frac{1}{2}(AB + CD) = \frac{1}{2}(a+b-d)$$
c. 
$$AM = \sqrt{a^2 + b^2}$$
$$BC = \sqrt{4a^2 + 4b^2} = \sqrt{4(a^2 + b^2)} = 2\sqrt{a^2 + b^2}$$
$$\sqrt{a^2 + b^2} = \frac{1}{2}(2\sqrt{a^2 + b^2})$$
$$AM = \frac{1}{2}(BC)$$
d. 
$$mAC = \frac{c}{a+b} \qquad a^2 = b^2 + c^2$$
$$mBD = \frac{c}{b-a} \qquad a = \sqrt{b^2 + c^2}$$
$$AB = a$$
$$\frac{c}{a+b} = -\frac{b-a}{c} \qquad BC = \sqrt{b^2 + c^2}$$

 $c^2 = a^2 - b^2$   $\therefore AB = BC \text{ and } ABCD \text{ is a rhombus.}$ 

| 1010 | <b>1.</b> The midpoint of the segment joining points $(a, b)$ and $(j, k)$ is<br><b>a.</b> $(j - a, k - b)$ <b>b.</b> $(\frac{j-a}{2}, \frac{k-b}{2})$ <b>c.</b> $(j + a, k + b)$ <b>d.</b> $(\frac{j+a}{2}, \frac{k+b}{2})$ |                                                                                           |                                                                                               |                                                                             |                                                                                       |          |    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------|----|
|      | 2.                                                                                                                                                                                                                           | The area of <b>The length</b>                                                             | a square is 36<br>of the diagon                                                               | al of the squ                                                               | are is                                                                                | <u>-</u> | 2  |
|      | 3.                                                                                                                                                                                                                           | <b>a.</b> $36 \vee 2$<br>Point <i>T</i> is the coordinate of <b>a</b> (0, 8)              | <b>b.</b> $6 \vee 2$<br>the midpoint of<br>of <i>J</i> is (0, 2). <b>T</b><br><b>b</b> (0, 3) | <b>c.</b> $3 \vee 2$<br>f $\overline{JH}$ . The coo<br><b>The coordinat</b> | <b>d.</b> 6<br>rdinate of <i>T</i> is (0, 5)<br>te of <i>H</i> is<br><b>d</b> (0, 11) | and the  | 3  |
|      | 4.                                                                                                                                                                                                                           | The measur<br>and $x + 45^{\circ}$ .                                                      | es of the angle $x = $                                                                        | es of a quadr                                                               | ilateral are $x, x, x +$                                                              | 15°,     | 4  |
|      | 5.                                                                                                                                                                                                                           | <ul><li>a. 75°</li><li>The completion</li><li>a. obtuse</li></ul>                         | <ul> <li>b. 105°</li> <li>ement of an a</li> <li>b. straight</li> </ul>                       | c. 100°<br>cute angle is<br>c. 90°                                          | <ul> <li>d. 95°</li> <li>a(n) angle.</li> <li>d. acute</li> </ul>                     |          | 5  |
|      | 6.                                                                                                                                                                                                                           | If $\frac{a}{b} = \frac{2}{5}$ , the <b>a</b> , $\frac{a}{5} = \frac{5}{5}$               | en<br>b. $\frac{b}{2} = \frac{2}{2}$                                                          | <b>c</b> . $\frac{b}{a} = \frac{5}{a}$                                      | <b>d</b> . $2a = 5h$                                                                  |          | 6  |
|      | 7.                                                                                                                                                                                                                           | For stateme <b>Which of the</b>                                                           | a = 5 nts <i>p</i> and <i>q</i> , <i>f</i> <b>re statements b</b> <i>a</i>                    | a = 2<br>"p \to q" is falmust be fals<br>c n and a                          | se; " $p$ or $q$ " is true.<br>e?                                                     |          | 7  |
|      | 8.                                                                                                                                                                                                                           | 8. Find the equation of a line through point (2, 5) and having a slope of $\frac{3}{7}$ . |                                                                                               |                                                                             |                                                                                       | 8        |    |
|      |                                                                                                                                                                                                                              | <b>a.</b> $3x - 7y =$<br><b>c.</b> $7x - 3y =$                                            | -29<br>15                                                                                     | <ul> <li><b>b.</b> 3x + 7y</li> <li><b>d.</b> 7y + 3y</li> </ul>            | = 29<br>= 15                                                                          |          |    |
|      | <ul> <li>9. Find the area of a 120° sector of a circle whose radius is 6.</li> <li>a. 15π b. 12π c. 18π d. 10π</li> <li>10. The graph of { (x, y): x = 2 and y &lt; 1} is .</li> </ul>                                       |                                                                                           |                                                                                               |                                                                             |                                                                                       | 9        |    |
|      |                                                                                                                                                                                                                              | a.                                                                                        | b.                                                                                            | ↓ <b>↓</b> μ                                                                | c.                                                                                    | d.       | 10 |
|      |                                                                                                                                                                                                                              |                                                                                           | →<br>+;}<br>x                                                                                 |                                                                             |                                                                                       |          | x  |

| 1101 | 1.  | Given <i>A</i> = {<br><b>a.</b> {1, 2, 3, 4,<br><b>c.</b> {2, 4}                                           | 1, 2, 3, 4, 5} a<br>5, 6, 8, 10}                                  | nd $B = \{2, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$ | $\{4, 6, 8, 10\}, A \cap B $ is<br>$\{1, 3, 5\}$<br>$\{6, 8, 10\}$ | 1  |
|------|-----|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|----|
|      | 2.  | Given $C = \{x \mid x \text{ is a } x \}$                                                                  | $x \mid x \text{ is a who}$<br>perfect squa                       | le number}<br>re < 100}, <i>C</i>                          | and $U \cup D$ is                                                  | 2  |
|      |     | <ul> <li>a. the set of</li> <li>b. the set of</li> <li>c. {1, 4, 9, 16</li> <li>d. {1, 2, 3, 4,</li> </ul> | all whole nu<br>perfect squar<br>5, 25, 36, 49}<br>5, 6, 7, 8, 9} | mbers<br>res < 100                                         |                                                                    |    |
|      | 3.  | $10 \div 5 + 6 \div 3$                                                                                     | 3 =                                                               |                                                            |                                                                    | 3  |
|      |     | <b>a.</b> $\frac{10}{33}$                                                                                  | <b>b.</b> 1                                                       | <b>c.</b> 4                                                | <b>d.</b> $2\frac{2}{3}$                                           |    |
|      | 4.  | $3 + 4 \div 2 + 6$                                                                                         | (9 - 3) ÷ 12 +                                                    | 1 =                                                        |                                                                    |    |
|      |     | <b>a.</b> $3 \frac{8}{13}$                                                                                 | <b>b.</b> $4 \frac{7}{24}$                                        | <b>c.</b> $7\frac{1}{2}$                                   | <b>d.</b> 9                                                        | 4  |
|      | 5.  | <b>The domain</b><br>a. {4, 6, 8}                                                                          | <b>of set</b> <i>E</i> = {<br><b>b.</b> {5, 7, 9}                 | (4, 5), (6, 7),<br><b>c.</b> {4, 6, 9}                     | (8, 9) } is<br>d. {5, 6, 7, 9}                                     | 5. |
|      | 6.  | Given that <i>f</i>                                                                                        | $f(x) = 2x^2 + 3,$                                                | <i>f</i> (3) =                                             |                                                                    |    |
|      |     | <b>a.</b> 29                                                                                               | <b>b.</b> 21                                                      | <b>c.</b> 15                                               | <b>d.</b> 9                                                        | 6  |
|      | 7.  | $5c \bullet 5c \bullet c \bullet$                                                                          | c written in                                                      | exponential                                                | notation is                                                        |    |
|      |     | <b>a.</b> $5^2c^4$                                                                                         | <b>b.</b> $25c^3$                                                 | <b>c.</b> $2 \bullet 5 \bullet 4$                          | 4 • c <b>d.</b> $5^{3}c^{3}$                                       | 7  |
|      | 8.  | $4^0 = \$<br><b>a.</b> 0                                                                                   | <b>b.</b> 1                                                       | <b>c.</b> 4                                                | <b>d.</b> 40                                                       | 8  |
|      | 9.  | The fraction                                                                                               | $\frac{1}{6^3}$ written w                                         | vith a negati                                              | ive exponent is                                                    |    |
|      |     | <b>a.</b> 1 <sup>-6</sup>                                                                                  | <b>b.</b> 6 <sup>-3</sup>                                         | <b>c.</b> 3 <sup>-6</sup>                                  | <b>d.</b> $(\frac{1}{6})^{-3}$                                     | 9  |
|      | 10. | $\frac{a^3b^2}{a^{-1}b^{-3}}$ =                                                                            |                                                                   |                                                            |                                                                    |    |
|      |     | <b>a.</b> ab                                                                                               | <b>b.</b> $a^2b^{-1}$                                             | <b>c.</b> $a^4b^5$                                         | <b>d.</b> $\frac{b}{a^2}$                                          | 10 |

| 1102 | 1.         | -4  =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.  |
|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | 2          | <b>a.</b> -4 <b>b.</b> 0 <b>c.</b> 1 <b>d.</b> 4 $(-105) \div (-5) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.  |
|      | 2.         | <b>a.</b> -21 <b>b.</b> -20 <b>c.</b> 20 <b>d.</b> 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|      | 3.         | The solution of $\frac{x}{8} = 42$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3   |
|      |            | <b>a.</b> $x = 336$ <b>b.</b> $x = 210$ <b>c.</b> $x = 5\frac{1}{4}$ <b>d.</b> $x = 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|      | 4.         | The solution of $4(7 - 3x) = 7(4 - 2x)^{4}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.  |
|      | 5          | <b>a.</b> $x = -5$ <b>b.</b> $x = -2$ <b>c.</b> $x = 0$ <b>d.</b> $x = 3$<br>The graph of $5x > 25$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|      | J.         | The graph of $3x > 20$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.  |
|      |            | <b>a.</b> $(-7-6-5-4-3-2-1) 0 1 2 3 4 5 6 7$ <b>b.</b> $(-7-6-5-4-3-2-1) 0 1 2 3 4 5 6 7$ <b>b.</b> $(-7-6-5-4-3-2-1) 0 1 2 3 4 5 6 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|      |            | c. $\leftarrow 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|      | 6.         | The graph of $3(2x + 5) \ge 2(x + 6)$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6   |
|      |            | a. $\leftarrow 1$ $\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      |            | $-7-6-5-4-3-2-1\frac{1}{4}$ 0 1 2 3 4 5 6 7 7 0 0 1 0 2 1 0 1 2 0 1 0 0 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|      |            | $-7-6-5-4-3-2-1\ 0\ 1\ 2\ 3\frac{3}{8}4\ 5\ 6\ 7$ $-7-6-5-4-3-2-1\frac{3}{4}0\ 1\ 2\ 3\ 4\ 5\ 6\ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | 7.         | The graph of $ y + 2  > 6$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|      |            | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7   |
|      |            | a. $\bigcirc$ 1 1 1 1 1 1 1 1 $\bigcirc$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|      |            | c. $\xrightarrow{-7-6}{-5-4} - 3-2-1 0 1 2 3 4 5 6 7$ d. $\xrightarrow{-7-6}{-5-4} - 3-2-1 0 1 2 3 4 5 6 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|      | 8          | The graph of $ 2r-3  < 11$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|      | 0.         | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | 8.  |
|      |            | a. $(-7-6-5-4-3-2-10)$ b. $(-7-6-5-4-3-2-10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|      |            | $\mathbf{c}_{-7-6-5-4-3-2-1\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7} \mathbf{d}_{-7-6-5-4-3-2-1\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7} \mathbf{d}_{-7-6-5-4-3-2-1\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|      | 9          | At 10.00 AM two airplanes leave an airport. If the northbound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|      | <i>J</i> . | airplane flies at 280 mph and the southbound at 320 mph, they                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.  |
|      |            | <b>will be</b> 1,000 miles <b>apart at</b><br><b>a.</b> 11:30 AM <b>b.</b> 11:40 AM <b>c.</b> 12:00 noon <b>d.</b> 1:20 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|      | 10         | Mrs. Martin bought \$200 worth of travelars' checks in \$10 and \$20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|      | 10.        | denominations. If she has 12 travelers' checks in all, she has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10. |
|      |            | <b>a</b> \$10: 5 <b>b.</b> \$10: 6 <b>c.</b> \$10: 3 <b>d.</b> \$10: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|      |            | $\phi_{20}$ , $\gamma$ $\phi_{20}$ , $\phi$ $\phi_{20}$ , $\gamma$ $\phi_{20}$ , $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |





y







The indicated product of  $(a^5)^7$  is \_\_\_\_. 1. 1104 1. **a.**  $a^2$  **b.**  $7a^5$  **c.**  $a^{12}$  **d.**  $a^{35}$ 2. The indicated product of (ab - 9)(ab + 8) is \_\_\_\_. 2. **b.**  $ab^2 - ab + 72$ **a.** 2*ab* - 72 c.  $a^2b^2 - ab - 72$ **d.**  $a^2b^2 - 17ab - 72$ 3. The indicated product of  $(x + 2y)^2$  is \_\_\_\_. 3. **b.**  $x^2 + 2xy + 4y^2$ **d.**  $x^2 + 4xy + 2y^2$ **a.**  $x^2 + 4xy + 4y^2$ c.  $x^2 + 2xy + 2y^2$ The factors of  $9x^2 - y^2$  are \_\_\_\_. 4. 4. **a.**  $(3x - y)^2$ **b.** (3x - y)(3x + y)**d.**  $3(x - y)^2$ c.  $(3x + y)^2$ The sum of  $(6x^2 + 2x - 9) + (3x^2 - 5x + 12)$  is \_\_\_\_. 5. 5. **b.**  $9x^2 + 7x - 3$ **d.**  $9x^2 - 3x - 3$ **a.**  $9x^2 - 3x + 3$ **c.**  $3x^2 - 3x + 3$ The difference of  $2x^2 + 5x - 10$  is \_\_\_\_. 6. 6.  $\frac{x^2 - 6x + 8}{b. x^2 + 11x - 18}$ **a.**  $3x^2 - x - 2$ c.  $x^2 - x - 2$ **d.**  $-x^2 - 11x - 18$ 7. The quotient of  $(4x^2 - 11x - 20) \div (x - 4)$  is \_\_\_\_. 7. **a.** 4*x* - 5 **b.** 2x + 5c. 4x + 5**d.** 2*x* - 4 8. **The quotient of**  $(a^{2n} - a^n - 6) \div (a^n + 8)$  **is** \_\_\_\_. 8. **a.**  $a^n - 9 + \frac{72}{a^n + 8}$  **b.**  $a^n - 9 + \frac{66}{a^n + 8}$ **c.**  $a^{2n} - 2 + \frac{10}{a^n + 8}$  **d.**  $a^n + 7 + \frac{-62}{a^n + 8}$ 9. If *x* varies directly as *y* and  $x = 7 \frac{1}{2}$  when y = 10, the value 9. of x when y = 4 is \_\_\_\_. **a.**  $1\frac{7}{8}$  **b.** 3 **c.**  $5\frac{1}{3}$  **d.**  $18\frac{3}{4}$ The volume of a right circular cone varies jointly as the 10. 10. altitude and the square of the radius of the base. If the volume of the cone is 154 cu. in. when its altitude is 12 in. and the radius of the base is  $3\frac{1}{2}$  in., when the volume of the cone is 77 cu. in. and the radius of the base is  $2\frac{1}{2}$  in., the altitude is \_\_\_\_inches. **a.**  $5\frac{4}{9}$  in. **b.** 6 in. **c.**  $10\frac{2}{7}$  in. **d.**  $13\frac{1}{2}$  in.

1. \_\_\_\_\_ 1. The value of  $\frac{4}{2r^0}$  is \_\_\_\_. 1105 **b.**  $\frac{2}{r}$  **c.** 4 **a.** 2 **d.** 4*x* The variable  $(\frac{3a^2}{5})^{-3}$  expressed with positive exponents is \_\_\_\_. 2. 2. \_\_\_\_\_ **a.**  $\frac{9a^6}{15}$  **b.**  $\frac{5}{3a}$  **c.**  $5(3a^2)^3$  **d.**  $\frac{5^3}{2^3a^6}$ 3. Divide:  $\frac{5}{2x+3y} \div \frac{10}{4x^2-9y^2} =$ \_\_\_\_. 3. \_\_\_\_\_ **a.** 4x + 6y **b.**  $\frac{2x - 3y}{2}$  **c.**  $\frac{2x + 3y}{2}$  **d.**  $\frac{1}{\frac{2(2x - 3y)}{2}}$ 4. Simplify:  $\frac{2y^2 - 7y - 15}{3y^2 - 8y - 3} \bullet \frac{9y^2 - 1}{4y^2 - 9} \div \frac{y^2 + 3y - 10}{2y^2 - 9y + 9} =$ \_\_\_\_\_. 4. \_\_\_\_\_ **a.**  $\frac{(y-5)(3y-1)}{(y+5)(y-2)}$  **b.**  $\frac{-(3y-1)(2y-3)}{y-2}$ **c.**  $\frac{3y-1}{y-2}$  **d.**  $\frac{9y^2-1}{(3y+1)(2y-3)}$ 5.  $\frac{x+6}{x^2+8x+15} + \frac{3x}{x+5} - \frac{x-3}{x+3} =$ \_\_\_\_\_. 5. **a.**  $\frac{2x+2}{x+5}$  **b.**  $\frac{2x^2+9x-9}{(x+5)(x+3)}$ **c.**  $\frac{2x^2 + 8x + 21}{(x+5)(x+3)}$  **d.**  $\frac{2x^2 + 16x + 15}{(x+5)(x+3)}$ 6.  $1 + 2x + \frac{1}{2x} =$ \_\_\_\_. 6. **a.** 4x + 1 **b.**  $\frac{2x + 4x^2 + 1}{2x}$  **c.**  $\frac{4x^2 + 3}{2x}$  **d.**  $\frac{6x + 1}{2x}$ 7. The solution to  $\frac{5}{2x+6} - 2 = \frac{1-8x}{4x}$  is \_\_\_\_. 7. \_\_\_\_\_ **a.**  $x = -3 \frac{1}{2}$  **b.** x = -1 **c.**  $x = \frac{1}{3}$  **d.** x = 2

8. The solution to  $\frac{3x-1}{9x-5} = \frac{x+1}{3x+1}$  is \_\_\_\_.

**a.** x = 1 **b.** x = 2 **c.** x = 3 **d.** x = 4

 A dairyman has 300 pounds of milk testing 3% butterfat.
 The number of pounds of skimmed milk he must remove to have milk testing 3.6% butterfat is \_\_\_\_ pounds.

**a.** 46.5 **b.** 48 **c.** 50 **d.** 51.4

**10.** John can type  $\frac{2}{3}$  of a manuscript in 8 hours. If Laura joins him, they can complete the typing in 4 hours. **The number of hours Laura would take to type the manuscript alone would be** \_\_\_\_ hours.

10.\_\_\_\_

9.

8.

**a.** 3 **b.** 4 **c.** 5 **d.** 6

| 1106 | 1.  | <b>The number</b> -8 <b>a.</b> rational                      | .64 <b>is a(n)</b> nu<br>b. irrational          | mber.<br>c.                               | radical                                               | <b>d.</b> imaginary            | 1.  |  |
|------|-----|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------------------|--------------------------------|-----|--|
|      | 2.  | <b>The number</b> 0.1<br><b>a.</b> rational                  | 23456789 <b>is a</b><br><b>b.</b> irrational    | (n) nu<br>c.                              | <b>mber.</b><br>radical                               | <b>d.</b> imaginary            | 2.  |  |
|      | 3.  | Rationalize the                                              | denominator and                                 | d simplify                                | $\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}}$ | $\frac{1}{3}\frac{1}{3}$ =     | 3.  |  |
|      |     | <b>a.</b> $\frac{4-\sqrt{6}}{2}$                             | <b>b.</b> 5 - $\sqrt{2}$                        | <b>c.</b> 5 - 2√                          | 6                                                     | <b>d.</b> 1 - $2\sqrt{6}$      |     |  |
|      | 4.  | The solution to <b>a.</b> $x = 7$                            | $\sqrt[3]{x-5} - 2 = 0$ is<br><b>b.</b> $x = 9$ | <b>c.</b> $x = 11$                        |                                                       | <b>d.</b> <i>x</i> = 13        | 4.  |  |
|      | 5.  | The solution to                                              | $10t^2 - 29t = -10$ l                           | oy factorin                               | ng is                                                 |                                |     |  |
|      |     | <b>a.</b> $t = \frac{5}{2}, \frac{2}{5}$                     | <b>b.</b> $t = \frac{5}{2}, -2$                 | <b>c.</b> $t = -3$ ,                      | 2                                                     | <b>d.</b> $t = \frac{1}{2}, 5$ | 5.  |  |
|      | 6.  | The solution to                                              | $c^2 + 11c = 12$ by                             | completir                                 | ng the squ                                            | uare is                        |     |  |
|      |     | <b>a.</b> $c = \frac{1}{2}, 12$                              | <b>b.</b> <i>c</i> = -1, 1                      | <b>c.</b> <i>c</i> = 1, -                 | -12                                                   | <b>d.</b> <i>c</i> = 2, 6      | 6.  |  |
|      | 7.  | The quadratic f<br>a. $x = \frac{b \pm \sqrt{b^2 + 4a}}{2a}$ | ormula is                                       | <b>b.</b> $x = \frac{-b}{-b}$             | $\frac{\pm \sqrt{a^2 - 4ac}}{2b}$                     |                                | 7.  |  |
|      |     | $c.  x = \frac{a \pm \sqrt{a^2 - 4ab}}{2c}$                  | -<br>b<br>-                                     | <b>d.</b> $x = \frac{-b}{-b}$             | $\pm \sqrt{b^2 - 4ac}$                                |                                |     |  |
|      | 8.  | Using the quad                                               | ratic formula, the                              | e solution                                | to                                                    |                                |     |  |
|      |     | (3 - y) (y + 4) = 3y - 5 is                                  |                                                 | <b>b.</b> $y = -1 \pm 3\sqrt{2}$          |                                                       |                                |     |  |
|      |     | <b>c.</b> $y = \frac{-3 \pm \sqrt{77}}{2}$                   | 1                                               | <b>d.</b> $y = \frac{2 \pm \sqrt{21}}{4}$ |                                                       |                                |     |  |
|      | 9.  | <b>An imaginary n</b><br><b>a.</b> does not exis             | umber<br>t                                      | <b>b.</b> equals                          | s <b>-</b> 1                                          |                                | 9.  |  |
|      |     | <b>c.</b> is the square any negative                         | root of<br>number                               | <b>d.</b> has no real ap                  | practical                                             | and<br>s                       |     |  |
|      | 10. | $i^{12} + 2 = $<br><b>a.</b> $i + 2$                         | <b>b.</b> - <i>i</i> + 2                        | <b>c.</b> 1                               |                                                       | <b>d.</b> 3                    | 10. |  |



a. circle b. ellipse c. parabola d. hyperbola

7. \_\_\_\_\_

8. The solution set to the system  $4x^2 + 9y^2 = 72$  is \_\_\_\_. 2x - y = 4

- a. { (-2, -8),  $(\frac{1}{2}, -3)$  } b. {  $(0, 2\sqrt{2}), (\frac{2}{3}, -2\frac{2}{3})$  } c. {  $(1, -2), (\frac{3}{4}, -2\frac{1}{2})$  } d. {  $(3, 2), (\frac{3}{5}, -2\frac{4}{5})$  }
- 9. Let y = safe load in pounds and x = depth in inches for a certain type of rectangular horizontal beam. A constant of proportionality exists such that  $y = kx^2$  (y varies directly as  $x^2$ ). For a beam with y = 1,000 pounds and x = 5 inches, the constant k and the equation of the parabola for the beam are \_\_\_\_\_. a. k = 0.000005 lbs. \_\_\_\_\_\_.  $y = 0.000005x^2$  \_\_\_\_\_\_\_. b. k = 40 lbs. \_\_\_\_\_\_.
  - **c.** k = 5,000 lbs. k = xy **d.** k = 25,000 lbs.  $k = x^2y$
- 10. The Jones family plans a 300-mile trip. Let y = time traveled (in hours) and x = average speed (in miles per hour). The equation for the rectangular hyperbola that expresses the relationship between time traveled (y) and average speed (x) is \_\_\_\_.
  - **a.** 300 = xy **b.**  $y = \frac{x}{300}$  **c.** x = 300y **d.**  $300 = x^2 + y^2$

9.

10.

8.



- 7. The number 0.283 expressed in scientific notation is \_\_\_\_.
  a. 2,830 x 10<sup>-4</sup>
  b. 283 x 10<sup>-3</sup>
  c. 28.3 x 10<sup>-2</sup>
  d. 2.83 x 10<sup>-1</sup>
- 8. Using the common logarithm table, antilog 3.2625 = \_\_\_\_.
  a. 0.5132
  b. 1.83
  c. 1,830
  d. 1,860

9. The sum of 
$$\begin{pmatrix} 2 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 5 \\ 2 & 3 & 4 \end{pmatrix}$$
 is \_\_\_\_.  
a.  $\begin{pmatrix} 6 & 4 & 0 \\ 12 & 0 & 9 \end{pmatrix}$  b.  $\begin{pmatrix} 3 & 2 & 5 \\ 6 & 3 & 5 \end{pmatrix}$  c.  $\begin{pmatrix} 2 & 1 & 5 \\ 6 & 0 & 4 \end{pmatrix}$  d.  $\begin{pmatrix} 2 & 1 & 0 \\ 8 & 0 & 4 \end{pmatrix}$ 

- 10. Mr. Jones buys two pens, one package of lined paper, and three boxes of staples. The respective prices are 60¢, 70¢, and 45¢ for each unit. On his way home, Mr. Jones remembers that he will have some extra needs, so he returns to the same store and buys three times the same order. The matrices and the amount of Mr. Jones bill are \_\_\_\_.
  - **a.** (8 4 12)  $\begin{pmatrix} 0.60 \\ 0.70 \\ 0.45 \end{pmatrix}$

**b.** (6 3 9) (0.60 0.70 0.45) Mr. Jones spent \$9.75.

Mr. Jones spent \$13.

| c.                      | (2 | 1 | 3) | (1.20) |  | d.  | 7       | (0.60 | 0.70  | 0.45) |
|-------------------------|----|---|----|--------|--|-----|---------|-------|-------|-------|
|                         |    |   |    | 0.70   |  |     | 4       |       |       |       |
|                         |    |   |    | 1.35   |  |     | 11      | /     |       |       |
| Mr. Jones spent \$7.15. |    |   |    |        |  | Mr. | Jones s | spent | \$13. |       |

|             |              | ۲            | OWWO         | <u>9</u><br>¥ | GARITH       | MS OF        | NUMBE                                | Sa   |              |      |
|-------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------------------------------|------|--------------|------|
| z           | 0            | -            | 7            | e             | *            | 5            | \$                                   | ~    | •0           | 6    |
| 2:          | 0000         | 0043         | 0086         | 0128          | 0170         | 0212         | 0253                                 | 0294 | 0334         | 0374 |
| :2          | 0792         | 0828         | 0864         | 6680          | 0934         | 6960         | 3                                    | 1038 | 1072         | 1106 |
| 22          | 1139         | 1173         | 1206         | 1239          | 1271         | 1303         | 1335                                 | 1367 | <b>6</b> 61  | 1430 |
| :           | 1041         | 7641         | C7C1         |               | tort         | 1101         | 5                                    | C/01 |              | 7611 |
| 13          | 1761         | 1790         | 1818         | 1847          | 1875         | 6061         | 1691                                 | 1959 | 1987         | 2014 |
| 2:          | 2041         | 2068         | 2002         | 2122          | 2148         | 2175         | 1077                                 | 1222 | 5027         | 6177 |
| 2           | 2553         | 2577         | 2601         | 2625          | 2648         | 2672         | 2695                                 | 2718 | 2742         | 2765 |
| •           | 2788         | 2810         | 2833         | 2856          | 2878         | 2900         | 2923                                 | 2945 | 2967         | 2989 |
| 20          | 3010         | 3032         | 3054         | 3075          | 3096         | 3118         | 3139                                 | 3160 | 3181         | 3201 |
| 2           | 3222         | 3243         | 3263         | 3284          | 3304         | 3324         | 3345                                 | 3365 | 3385         | 3404 |
| 23          | 3424         | 446          | 3464         | 3483          | 3502         | 3522         | 3541                                 | 3560 | 3579         | 3598 |
| 32          | 3802         | 3820         | 3838         | 3856          | 3874         | 3892         | 6066                                 | 3927 | 3945         | 3962 |
| 25          | 3979         | 3997         | 4014         | 4031          | 4048         | 4065         | 4082                                 | 4099 | 4116         | 4133 |
| 36          | 4150         | 4166         | 4183         | 4200          | 4216         | 4232         | 4249                                 | 4265 | 4281         | 4298 |
| 2           | 4314         | 4330         | 4346         | 4362          | 4378         | 4393         | 440                                  | 4425 | 440          | 4456 |
| <b>8</b> 8  | 44/2<br>4624 | 4487<br>4639 | 4502<br>4654 | 4518<br>4669  | 4533<br>4683 | 4548<br>4698 | 4<br>4<br>1<br>1<br>3<br>4<br>1<br>3 | 4728 | 4742<br>4742 | 4004 |
|             |              |              |              |               |              |              |                                      |      |              |      |
| 8;          | 1114         | 4786         | 4800         | 4814          | 4829         | 4843         | 4857                                 | 4871 | 4886         | 4900 |
| 32          | 5051         | 5065         | 5079         | 5092          | 5105         | 5119         | 5132                                 | 5145 | 5159         | 5172 |
| 8           | 5185         | 5198         | 5211         | 5224          | 5237         | 5250         | 5263                                 | 5276 | 5289         | 5302 |
| 5           | 5315         | 5328         | 5340         | 5353          | 5366         | 5378         | 5391                                 | 5403 | 5416         | 5428 |
| 35          | 5441         | 5453         | 5465         | 5478          | 5490         | 5502         | 5514                                 | 5527 | 5539         | 5551 |
| 8           | 5563         | 5575         | 5587         | 5599          | 5611         | 5623         | 2633                                 | 264  | 5658         | 2020 |
|             | 2800         |              | C0/C         | 11/2          | 67/5         | 04/C         | 26/6                                 | 1010 | 5888         | 5800 |
| 3 6         | 5911         | 5922         | 5933         | 594           | 5955         | 5966         | 5977                                 | 5988 | 2999         | 6010 |
| ŧ           | 6021         | 6031         | 6042         | 6053          | 6064         | 6075         | 6085                                 | 9609 | 6107         | 6117 |
| 49          | 6128         | 6138         | 6149         | 6160          | 6170         | 6180         | 1619                                 | 6201 | 6212         | 6222 |
|             | 6335         | 6345<br>6345 | 6356<br>2556 | 6365<br>6365  | 6375         | 6385         | 5629                                 |      | 6415         | 6425 |
| \$          | 6435         | <b>44</b>    | 6454         | <b>245</b>    | 6474         | 6484         | 6493                                 | 6503 | 6513         | 6522 |
| 45          | 6532         | 6542         | 6551         | 6361          | 6571         | 6580         | 6390                                 | 6399 | 6099         | 6618 |
| <b>\$</b> ! | 6628         | 6637         | 6646         | 6656          | 6665         | 6675         | 6684                                 | 6693 | 6702         | 6712 |
| ;4          | 6812         | 6821         | 6830         | 6839          | 6848<br>6848 | 6857         | 8089                                 | 6875 | 1889         | 6893 |
| 4           | 6902         | 6911         | 6920         | 6928          | 6937         | 6946         | 6955                                 | 6964 | 6972         | 6981 |
| 2           | 0669         | 8669         | 7007         | 7016          | 7024         | 7033         | 7042                                 | 7050 | 7059         | 1067 |
| 52          | 9/0/         | 7168         | 5601         | 1012          | 0117         | 7202         | 7210                                 |      | 7226         | 7235 |
| 5           | 7243         | 7251         | 7259         | 7267          | 7275         | 7284         | 7292                                 | 7300 | 7308         | 7316 |
| 5           | 1324         | 7332         | 7340         | 7348          | 7356         | 7364         | 13/12                                | /380 | /388         | 0667 |

10.

7.

8.

9.

| 1109 | 1.  | An example of an arithmetic series is                                                                                                 | 1  |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------|----|
|      |     | <b>a.</b> $1 + 2 + 3 + 4 + \ldots + 10$ <b>b.</b> $\frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \frac{3}{16} + \frac{3}{32}$             |    |
|      |     | <b>c.</b> $5 + 10 + 15 + 20 \dots 5n$<br><b>d.</b> $2 + 4 + 8 + 10 + 14 + 16$                                                         |    |
|      | 2   | An average of a competitive contraction                                                                                               | 2  |
|      | Ζ.  | An example of a geometric series is                                                                                                   | Ζ  |
|      |     | <b>a.</b> $\frac{1}{2} + 1 + 1 \frac{1}{2} + 2 + 2 \frac{1}{2}$ <b>b.</b> $5 + 10 + 20 + 25 + 30$                                     |    |
|      |     | <b>c.</b> $2 + 4 + 6 + 8 + 10$<br><b>d.</b> $\frac{2}{3} + \frac{2}{6} + \frac{2}{12} + \frac{2}{24} + \frac{2}{48}$                  |    |
|      | 3.  | 5! =                                                                                                                                  |    |
|      |     | <b>a.</b> 5 <b>b.</b> 20 <b>c.</b> 60 <b>d.</b> 120                                                                                   | 3  |
|      | 4.  | $\frac{8! \cdot 4!}{7! \cdot 3!} = \underline{\qquad}.$                                                                               |    |
|      |     | <b>a.</b> $1 \frac{11}{11}$ <b>b.</b> 14 <b>c.</b> 32 <b>d.</b> 96                                                                    | 4  |
|      |     | 21                                                                                                                                    |    |
|      |     |                                                                                                                                       |    |
|      | 5.  | A representative from each of 7 nations is to sit at a round table to discuss trade relations. The number of ways the representatives | 5  |
|      |     | can be seated is                                                                                                                      |    |
|      | _   | <b>a.</b> 7 <b>b.</b> $7^2 = 49$ <b>c.</b> $6! = 720$ <b>d.</b> $7! = 5,040$                                                          |    |
|      | 6.  | The number of permutations that exist of the letters<br>W X Y and Z taking three at a time is                                         | 6  |
|      |     | <b>a.</b> 12 <b>b.</b> 4 <b>c.</b> 24 <b>d.</b> 48                                                                                    |    |
|      | 7.  | An agriculture researcher wants to test the effect of 9 soil additives                                                                | 7  |
|      |     | number of different combinations she can test is                                                                                      |    |
|      |     | <b>a.</b> 36 <b>b.</b> 120 <b>c.</b> 126 <b>d.</b> 15,120                                                                             |    |
|      | 8.  | The number of different committees of 3 people that can be made from a group of 4 is                                                  | 8  |
|      |     | a. 4       b. 8       c. 12       d. 24                                                                                               |    |
|      |     |                                                                                                                                       |    |
|      | 9.  | A certain event has the probability of $\frac{3}{4}$ . The probability that the                                                       | 9. |
|      |     | event will not occur is                                                                                                               |    |
|      |     | <b>a.</b> 1 <b>b.</b> $\frac{3}{4}$ <b>c.</b> $\frac{1}{2}$ <b>d.</b> $\frac{1}{4}$                                                   |    |
|      |     |                                                                                                                                       | 10 |
|      | 10. | The probability that a randomly selected person was born in June                                                                      | 10 |
|      |     | is $\frac{1}{12}$ . If five people are chosen at random and their birth months                                                        |    |
|      |     | are noted, the probability that at least one has a June birthday is $\_$                                                              | •  |
|      |     | 161.051 . 87.781 14.641 . 1                                                                                                           |    |
|      |     | <b>a.</b> $\frac{1}{248,832}$ <b>b.</b> $\frac{1}{248,832}$ <b>c.</b> $\frac{1}{248,832}$ <b>d.</b> $\frac{1}{248,832}$               |    |

| 1110 | 1.  | The graph of the parabola $y = \frac{-x^2}{20}$ opens                                                                                                                                                                                             | 1      |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|      |     | <b>a.</b> upward <b>b.</b> downward <b>c.</b> to the right <b>d.</b> to the left                                                                                                                                                                  |        |
|      | 2.  | <b>Evaluate</b> $12x^2y^{-1}$ for $x = 3$ and $y = 4$ .<br><b>a.</b> 23 <b>b.</b> 37 <b>c.</b> 27 <b>d.</b> 9                                                                                                                                     | 2      |
|      | 3.  | Subtract $2x^2 - 4x - 3$ from $x^2 - 5x - 8$ .a. $-x^2 - x - 5$ b. $x^2 + 5x + 11$ c. $-x^2 - 9x - 11$ d. $-2x^2 - x - 5$                                                                                                                         | 3      |
|      | 4.  | Factor $8x^2 + 72x + 112$ completely.a. $2(x + 8) \bullet 4(x + 14)$ b. $8(x + 2)(x + 14)$ c. $8(x + 9)(x + 14)$ d. $8(x + 7)(x + 2)$                                                                                                             | 4      |
|      | 5.  | Solve $\frac{y+4}{2y} + \frac{y-2}{3} = \frac{3y^2+10}{6y}$ for y.                                                                                                                                                                                | 5      |
|      | 6   | <b>a.</b> $y = 1, -2$ <b>b.</b> $y = 2, 1$ <b>c.</b> $y = 4, 2$ <b>d.</b> $y = -4, 2$                                                                                                                                                             |        |
|      | 0.  | <b>a.</b> 25 <b>b.</b> $-5i^2$ <b>c.</b> 17 <b>d.</b> 19                                                                                                                                                                                          | 6      |
|      | 7.  | Add. $\begin{pmatrix} 2 & 8 \\ 7 & -4 \end{pmatrix} + \begin{pmatrix} 6 & -14 \\ 9 & 3 \end{pmatrix}$                                                                                                                                             | 7      |
|      |     | <b>a.</b> $\begin{pmatrix} 8 & -6 \\ 16 & -1 \end{pmatrix}$ <b>b.</b> $\begin{pmatrix} -4 & 6 \\ -2 & 1 \end{pmatrix}$ <b>c.</b> $\begin{pmatrix} 14 & -12 \\ 5 & 10 \end{pmatrix}$ <b>d.</b> $\begin{pmatrix} 11 & 11 \\ 13 & -18 \end{pmatrix}$ |        |
|      | 8.  | <b>Find the 37th term of the sequence</b> 2, 5, 8, 11, 14,                                                                                                                                                                                        | 8      |
|      | 9.  | What is the probability of drawing a yellow marble or a red<br>marble from a bag containing 12 yellow marbles, 16 red marbles,<br>and 15 green marbles?                                                                                           | 9      |
|      |     | <b>a.</b> $\frac{12}{28}$ <b>b.</b> $\frac{16}{28}$ <b>c.</b> $\frac{28}{30}$ <b>d.</b> $\frac{28}{43}$                                                                                                                                           |        |
|      | 10. | The graph of the conic $4x^2 + 4(y^2 - 4) = 0$ is                                                                                                                                                                                                 | 10     |
|      |     | a. $y$ $y$ $d$ $d$                                                                                                                                                                                                                                | y<br>• |
|      |     |                                                                                                                                                                                                                                                   | x      |

1. The domain of the relation  $\{(x, y) : y = \frac{2x-5}{13x}\}$  is \_\_\_\_. 1201 1. **a.**  $\{x: x = \frac{-5}{11}\}$ **b.**  $\{y: y \in R\}$ **c.** {*x*:  $x \in R, x \neq 0$ } **d.** {x: x is a positive number} The range of the relation  $\{(x, y) : y = |x|\}$  is \_\_\_\_. 2. **a.** {*x*:  $x \in R$ } **b.**  $\{y: y \ge 0\}$ 2. \_\_\_\_\_ **d.** {y: y is a positive number} **c.** {*y*:  $y \in R$ } Given the function  $G(x) = 2x^2 + 2x - 1$ , G(3) =\_\_\_\_. 3. **c.** 23 **a.** 1 and -2 **b.** 17 **d.** 41 3. Given the function  $H(x) = x^2 - 3x + 5$ , H(a - b) =\_\_\_\_. 4. **a.**  $x^2 - 3x + 5$ **b.**  $a^2 - b^2 - 3a + 3b$ **c.**  $a^2 - b^2 - 3a - 3b + 5$ **d.**  $a^2 - 2ab + b^2 - 3a + 3b + 5$ 4. **Given** f(x) = x + 4 and g(x) = 3x - 1,  $(f \cdot g)(x) =$ \_\_\_\_. 5. **a.** 4x + 3**b.** 2x - 3 **c.**  $3x^2 + 12x + 3$  **d.** 3x + 11x - 45. \_\_\_\_\_ Given f(x) = x + 2 and  $g(x) = \frac{1}{x-1}$ ,  $\frac{[g(x)]^2}{2f(x)} =$ \_\_\_\_\_. 6. 6.

**a.** 
$$\frac{2(x+2)}{(x-1)^2}$$
  
**b.**  $\frac{1}{2(x-1)^2(x+2)}$   
**c.**  $\frac{2(x-1)^2}{x+2}$   
**d.**  $\frac{(x+2)^2(x-1)}{2}$ 

7. Given 
$$f(x) = x^2 + 6$$
 and  $g(x) = 2x - 1$ ,  $f[g(x)] =$ \_\_\_\_\_\_.  
a.  $2x^2 + 11$  b.  $2x^2 + 18$  c.  $4x^2 - 4x$  d.  $4x^2 - 4x + 7$  7. \_\_\_\_\_\_.  
8. The graph of the identity function,  $I(x) = x$  is \_\_\_\_\_.  
a. b. c. d. 8. \_\_\_\_\_\_.  
a. b. c. d. 8. \_\_\_\_\_\_.  
9. Given  $J = 2x + 6$ ,  $J^{-1} =$ \_\_\_\_.  
a. -4 b.  $-2x - 6$  c.  $\frac{1}{2x + 6}$  d.  $\frac{x - 6}{2}$  9. \_\_\_\_\_.

**10.** Given 
$$H = x^2 + 8$$
,  $H^{-1} =$ \_\_\_\_\_\_  
**a.** 9 **b.**  $-x^2 - 8$  **c.**  $\frac{1}{x^2 + 8}$  **d.**  $\pm \sqrt{x - 8}$ 





a.

a.

b.





4. The graph of 
$$D = \{ (x, y) : y \ge 2x^2 - 5x + 1 \}$$
 is \_\_\_\_\_



5. Using the factor theorem to determine whether (3x + 1) is a factor of  $f(x) = 9x^3 + 6x^2 + 4x + 2$  is shown by \_\_\_\_.

a. 
$$3x^{2} + x + 1 \quad R \; 1$$
  

$$3x \; + \; 1)9x^{3} + 6x^{2} + 4x + 2$$
  

$$9x^{3} + 3x^{2}$$
  

$$3x^{2} + 4x$$
  

$$3x^{2} + x$$
  

$$3x + 2$$
  

$$3x + 1$$
  

$$1$$
  
b.  $(3x + 1)(3x^{2} + x + 1) + 1$   

$$3x + 1) + 1$$
  

$$3x^{2} + x + 1$$
  

$$3x^{2} + x + 1$$
  

$$3x^{2} + 4x$$
  

$$3x + 2$$
  

$$3x + 1$$
  

$$1$$

c. 
$$f(-\frac{1}{3}) = 9(-\frac{1}{3})^3 + 6(-\frac{1}{3})^2$$
  
+  $4(-\frac{1}{3}) + 2$   
=  $9(-\frac{1}{27}) + 6(\frac{1}{9}) - \frac{4}{3} + 2$   
=  $-\frac{1}{3} + \frac{2}{3} - \frac{4}{3} + 2$   
=  $1$ 

1

Using synthetic division to find 6. g(3) if  $g(x) = 2x^3 - 3x^2 - 5x - 12$  is shown by \_\_\_\_.  $2x^2 + 3x + 4$ **a.**  $g(3) = 2(3)^3 - 3(3)^2 - 5(3) - 12$  **b.**  $= 2(27) - 3(9) - 15 - 12 \qquad x - 3 \quad \overline{)2x^3 - 3x^2 - 5x - 12}$ = 54 - 27 - 27  $2x^3 - 6x^2$  $3x^2 - 5x$ = 0 $3x^2 - 9x$ 4*x* - 12 4*x* - 12 0 **c.** <u>3</u> <u>2 - 3 - 5 - 12</u> **d.**  $(x - 3)(2x^2 + 3x + 4)$ 0 + 6 + 9 + 122 + 3 + 4 + 0The graph of the greatest integer function F(x) = x - [x] is \_\_\_\_. 7. 7. d. a. b. c. Y ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ х х х х 

5.

6.



| 1203 |     | <b>a.</b> $(\theta, \frac{v}{r})$ :         | $\underline{ } \theta = \frac{v}{r}$ | <b>b.</b> $(\theta, \frac{u}{r})$ :   | $\underline{\qquad} \theta = \frac{u}{r}$                    |        |
|------|-----|---------------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------------------------------|--------|
|      |     | $\mathbf{c.} \ (\theta, \frac{r}{v}): \ \_$ | $- \theta = \frac{r}{v}$             | <b>d.</b> $(\theta, \frac{v}{u})$ : _ | $\underline{\qquad} \theta = \frac{v}{u}$                    |        |
|      | 1.  | Substituting                                | 1a                                   |                                       |                                                              |        |
|      |     | selections, c                               | hoose the co                         | rrect definitio                       | on for                                                       | D<br>c |
|      |     | a. sin                                      | b. co                                | S                                     | c. tan                                                       |        |
|      | 2.  | Using the tr                                | igonometric                          | table (p. 84),                        | <b>if</b> $\tan \theta = 5.769, \ \theta =$ .                | 2      |
|      |     | <b>a.</b> 9° 50′                            | <b>b.</b> 29 <sup>°</sup> 59′        | <b>c.</b> $80^{\circ} 10'$            | <b>d.</b> 81 <sup>°</sup> 10′                                |        |
|      | 3.  | Using the tr                                | igonometric                          | table, the val                        | <b>ue o</b> f sec $48^{\circ} 24'$ <b>is</b> .               | 3.     |
|      |     | <b>a.</b> 1.337                             | <b>b.</b> 1.502                      | <b>c.</b> 1.506                       | <b>d.</b> 1.507                                              |        |
|      |     |                                             |                                      |                                       |                                                              | 4      |
|      | 4.  | The value o                                 | f tan $330^{\circ} 20'$              | is                                    |                                                              | ··     |
|      |     | <b>a.</b> -0.5696                           | <b>D.</b> -0.5930                    | <b>c.</b> 0.5696                      | <b>a.</b> 1.756                                              |        |
|      | 5.  | The value o                                 | <b>f</b> csc 210 <sup>0</sup> 17'    | is .                                  |                                                              | 5.     |
|      |     | <b>a.</b> -1.983                            | <b>b.</b> -1.158                     | <b>c.</b> -0.5285                     | <b>d.</b> 0.8643                                             |        |
|      |     |                                             |                                      |                                       |                                                              |        |
|      | 6.  | The value o                                 | $f (2 \cos 90^{\circ})$              | $(\sin 270^{\circ}) +$                | $(\tan 180^{\circ}) \bullet (\cot 90^{\circ}) \text{ is } \$ | 6.     |
|      |     | <b>a.</b> 0                                 | <b>D.</b> 1                          | <b>c.</b> -2                          | a. undenned                                                  |        |
|      | 7.  | The value o                                 | <b>f</b> cot $90^{\circ}$ + (se      | ec 180°) • (csc                       | $(270^{\circ})$ - tan $0^{\circ}$ is .                       | 7      |
|      |     | <b>a.</b> 1                                 | <b>b.</b> 0                          | <b>c.</b> -1                          | <b>d.</b> undefined                                          | ··     |
|      | _   |                                             |                                      |                                       |                                                              | 0      |
|      | 8.  | The value o                                 | f (csc 90° • co                      | $5s \ 180^{\circ})^{3}$ is            | d_ undefined                                                 | ð      |
|      |     | <b>d.</b> -1                                | <b>D.</b> 0                          | <b>C.</b> 1                           | <b>a.</b> undermed                                           |        |
|      | 9.  | The value o                                 | 9                                    |                                       |                                                              |        |
|      |     | _                                           |                                      |                                       |                                                              |        |
|      |     | a. $\sqrt{2}$                               | <b>b.</b> $\frac{V_2}{2}$            | <b>c.</b> $\frac{1}{2}$               | <b>d.</b> $\frac{\sqrt{3}}{2}$                               |        |
|      |     |                                             |                                      |                                       |                                                              |        |
|      | 10. | Express 36 <sup>o</sup>                     | in radians:                          | ·                                     |                                                              | 10     |
|      |     | 5                                           | π                                    | π                                     |                                                              |        |
|      |     | a. $\frac{\sigma}{\pi}$                     | <b>b.</b> ${10}$                     | <b>c.</b> $\frac{1}{5}$               | d. $5\pi$                                                    |        |

- 1204 1. The value of  $\sin^2 \frac{\pi}{3}$  is \_\_\_\_.
  - **a.** 0 **b.**  $\frac{1}{4}$  **c.**  $\frac{1}{2}$  **d.**  $\frac{3}{4}$

2. The value of 
$$\cos \frac{\pi}{6} + \sin \frac{5\pi}{6}$$
 is \_\_\_\_.  
a. 0 b. 1 c.  $\sqrt{3}$  d.  $\frac{\sqrt{3}+1}{2}$ 

1. \_\_\_\_\_

2. \_\_\_\_\_

3. \_\_\_\_\_

3. The graph of 
$$y = \cos x$$
,  $\frac{-\pi}{2} \le x \le 2\pi$  is \_\_\_\_.





4. The graph of  $y = \tan x, -2\pi \le x \le \frac{\pi}{2}$  is \_\_\_\_.



7. The period of  $y = \sec \frac{x}{3}$  is \_\_\_\_.

**a.** 
$$\frac{1}{6\pi}$$
 **b.**  $\frac{\pi}{3}$  **c.**  $3\pi$  **d.**  $6\pi$ 

**The graph of**  $y = 3 \cos 3x$ ,  $0 < x < 2\pi$  **is** \_\_\_\_. 8.



7.

- 9. The phase shift of  $F(x) = \cot(2x 1)$  is \_\_\_\_.
  - **a.**  $\frac{\pi}{2}$  units left **b.** 1 unit left
  - **c.**  $\frac{1}{2}$  unit right **d.**  $\pi$  units right

**10.** The graph of 
$$G(x) = \sec(x - \frac{\pi}{2})$$
 is \_\_\_\_.



9.\_\_\_\_

10. \_\_\_\_\_

1205 1. The expression 
$$1 + \tan \theta \cot \theta - \frac{\sin \theta \cot \theta}{2}$$
 simplifies to \_\_\_\_\_\_ 1. \_\_\_\_\_  
a. 0 b. 1 c.  $1\frac{1}{2}$  d. 2  
2. The expression  $\frac{\sin \theta}{\cos \theta} \cdot \csc \theta + \frac{1}{\sec \theta}$  equals \_\_\_\_\_\_ 2. \_\_\_\_\_  
a.  $\sec \theta + \cos \theta$  b.  $\frac{\sin^2 \theta}{\cos \theta}$  c.  $\sin \theta + \cos \theta$  d.  $2 \cos \theta$   
3. Given that  $\alpha$  and  $\beta$  are first-quadrant angles,  $\sin \alpha = \frac{1}{2}$ , and  $\cos \beta = \frac{2}{3}$ , the value of  $\sin(\alpha - \beta)$  is \_\_\_\_\_\_ a.  $\frac{41}{12}$  b.  $\frac{4 \cdot 3\sqrt{5}}{12}$   
c.  $\frac{3\sqrt{3} + 4\sqrt{5}}{12}$  d.  $\frac{2 \cdot \sqrt{15}}{6}$   
4. Given that  $\theta$  and  $\phi$  are first-quadrant angles,  $\sin \theta = \frac{3}{5}$ , and  $\sin \phi = \frac{\sqrt{2}}{2}$ , the value of  $\tan(\theta + \phi)$  is \_\_\_\_\_ a.  $\frac{4}{4 \cdot 3\sqrt{2}}$   
5. Given that  $\cos \alpha = \frac{\sqrt{2}}{2}$  and  $x$  is a fourth-quadrant angle, the value of  $\cos 2x$  is \_\_\_\_\_ a.  $\frac{1}{2}$  d.  $\frac{2}{2}$   
6. Given that  $\cos \alpha = \frac{3}{5}$  and  $\alpha$  is a first quadrant angle, the value of  $\cos 2\alpha$  is \_\_\_\_\_ a.  $\frac{1}{2}$  d.  $\frac{1}{2}$   
5. Given that  $\cos \alpha = \frac{3}{5}$  and  $\alpha$  is a first quadrant angle, the value of  $\cos 2\alpha$  is \_\_\_\_\_ a.  $\frac{1}{4}$  d.  $\frac{2}{25}$  c.  $1$  d.  $\frac{7}{25}$   
7. Given that  $\cos x = \frac{1}{2}$  and  $x$  is a fourth-quadrant angle, the value of  $\cos 2\alpha$  is \_\_\_\_\_\_ a.  $\frac{1}{4}$  d.  $\frac{2}{25}$  d.  $\frac{1}{2}$  d.  $\frac{1}{2}$   
7. Given that  $\cos x = \frac{1}{2}$  and  $x$  is a fourth-quadrant angle, the value of  $\cos 2\alpha$  is \_\_\_\_\_\_ a.  $\frac{1}{4}$  d.  $\frac{2}{25}$  d.  $\frac{1}{2}$  d.  $\frac{1}{2}$  d.  $\frac{7}{2}$
10. \_\_\_\_\_

**10.** The solution to  $3 \cot x + \sqrt{3} = 0$  with domain  $0^{0} \le x \le 360^{0}$ is \_\_\_\_\_\_. a.  $x = \{60^{0}, 120^{0}\}$  b.  $x = \{120^{0}, 300^{0}\}$ 

**c.**  $x = \{150^{\circ}, 210^{\circ}\}$  **d.**  $x = \{150^{\circ}, 330^{\circ}\}$ 



9. The pilot wishes to fly on course 290° with an air speed of 300 knots when the wind blows from direction 224° at 18 knots. The wind correction angle is \_\_\_\_.
a. 3° 8′ b. 5° 42′ c. 11° 59′ d. 15° 14′

9.

10. Two submarines, one cruising at 25 knots and the other at 20 knots, left a naval base at the same moment. Three hours later they were 100 nautical miles apart. The measure of the angle between their courses was \_\_\_\_.

**a.** 26<sup>°</sup> **b.** 95<sup>°</sup> **c.** 154<sup>°</sup> **d.** 175<sup>°</sup>





5. The polar coordinates  $(3, \frac{-3\pi}{4})$  expressed as

# Cartesian coordinates are \_\_\_\_.

**a.** 
$$\left(-\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$$
  
**b.**  $\left(-\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right)$   
**c.**  $\left(\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$   
**d.**  $\left(\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right)$ 

5. \_\_\_\_\_



The graph of  $r = 1 + \cos \theta$  is \_\_\_\_. 10.







7. The translation of  $2x^2 + 3y^2 - 8x + 6y - 7 = 0$  to its new center is \_\_\_\_.

**a.**  $\frac{(x')^2}{9} + \frac{(y')^2}{6} = 1$  **b.**  $\frac{(x')^2}{7} + \frac{(y')^2}{8} = 1$  **c.**  $2(x'-2)^2 + 3(y'+1)^2 = 6$ **d.**  $(x')^2 + (y')^2 = 1$ 

80



- 9. The equation  $7x^2 6\sqrt{3}xy + 13y^2 = 16$ , when rotated is \_\_\_\_\_ 9. \_\_\_\_ a.  $7(x')^2 + 13(y')^2 = \frac{8\sqrt{3}}{9}$  b.  $(x')^2 + 5(y')^2 = 16$ c.  $(x')^2 + 4(y')^2 = 4$  d.  $3(x')^2 - 2(y')^2 = 12$
- **10.** The equation  $x^2 + 4xy + y^2 = 16$ , when transformed, is \_\_\_\_\_. 10. \_\_\_\_\_. **a.**  $(x')^2 + 8(y')^2 = 1$  **b.**  $(x')^2 - (y')^2 = 1$

**c.** 
$$\frac{(x')^2}{6} + \frac{(y')^2}{2} = 1$$
 **d.**  $\frac{(x')^2}{\frac{16}{3}} - \frac{(y')^2}{16} = 1$ 

8.

| 1209 | 1.  | A letter of the alphabet is chosen at random. The probability that the letter chosen is a yowel is | 1   |
|------|-----|----------------------------------------------------------------------------------------------------|-----|
|      |     | 2 $1$ $5$ $5$ $1$ $-$                                                                              |     |
|      |     | <b>a.</b> $\frac{1}{13}$ <b>b.</b> $\frac{1}{21}$ <b>c.</b> $\frac{1}{26}$ <b>d.</b> 5             |     |
|      | 2.  | From an assortment containing seven blue light bulbs, four red                                     | 2.  |
|      |     | bulbs, and three white bulbs, a bulb is chosen at random. The                                      |     |
|      |     | probability that it will not be red is                                                             |     |
|      | -   | <b>a.</b> 0.29 <b>b.</b> 0.40 <b>c.</b> 0.50 <b>d.</b> 0.71                                        |     |
|      | 3.  | An integer is chosen at random from the first 40 positive integers.                                | 3   |
|      |     | a = 0.050 b $0.250$ c $0.275$ d $0.580$                                                            | ·   |
|      | 4.  | A certain class of 160 students has 50 honor students and 70                                       | 4   |
|      |     | athletes. Sixty students in the class are not honor students and                                   |     |
|      |     | are not involved in sports. If a student is selected at random to                                  |     |
|      |     | represent the class, the probability that he is an honor student or                                |     |
|      |     | an athlete is                                                                                      |     |
|      |     | <b>a.</b> $\frac{1}{8}$ <b>b.</b> $\frac{1}{4}$ <b>c.</b> $\frac{7}{16}$ <b>d.</b> $\frac{5}{8}$   |     |
|      |     | 8 4 10 8                                                                                           |     |
|      | 5.  | A job applicant estimates that his chance of passing a qualifying                                  | 5.  |
|      |     | examination is $\frac{2}{2}$ and his chance of being appointed if he does                          |     |
|      |     | $\frac{1}{3}$ and his chance of being appointed if he does                                         |     |
|      |     | pass is $\frac{1}{4}$ . The probability that he will receive the job is                            |     |
|      |     | <b>a.</b> 0.167 <b>b.</b> 0.343 <b>c.</b> 0.833 <b>d.</b> 0.917                                    |     |
|      | 6.  | One bag contains three green marbles and five blue marbles, and                                    |     |
|      |     | a second bag contains four green marbles and six blue marbles.                                     | 6.  |
|      |     | A person draws one marble from each bag. The probability that                                      |     |
|      |     | both marbles are blue is                                                                           |     |
|      | 7.  | The value of $\pi P_0$ is .                                                                        |     |
|      |     | a 14 b 25 c 38 d 42                                                                                | 7   |
|      | 8.  | The number of ways 5 men and 5 women can be seated at a                                            | ··  |
|      |     | round table if the men and women alternate is                                                      | 8.  |
|      |     | <b>a.</b> 240 <b>b.</b> 625 <b>c.</b> 2,500 <b>d.</b> 2,880                                        |     |
|      | 9.  | The value of ${}_{10}C_{10}$ is                                                                    |     |
|      |     | <b>a.</b> 1 <b>b.</b> 10 <b>c.</b> 100 <b>d.</b> 3,628,800                                         | 9   |
|      | 10  | A research scientist is testing whether drugs interact so that                                     |     |
|      | 10. | two drugs might be given simultaneously. If he is concerned                                        | 10. |
|      |     | with ten drugs, the number of pairs he must consider is                                            |     |
|      |     | <b>a.</b> 5 <b>b.</b> 20 <b>c.</b> 45 <b>d.</b> 90                                                 |     |

| 1210 | 1.                                                                                                                                                                                                                                                                                     | Given that $f(x) = 3x^3 + x - 1$ , evaluate the function: $f(-2)$<br>a. 27 b27 c. 25 d21                                                                                                                                                                                                                                                                              | 1 |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
|      | 2.                                                                                                                                                                                                                                                                                     | <b>Evaluate the limits:</b> $\lim_{x^3} \frac{1}{x^3}$                                                                                                                                                                                                                                                                                                                | 2 |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                        | $\chi \rightarrow -2$                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                        | <b>a.</b> $-\frac{1}{16}$ <b>b.</b> $\frac{1}{8}$ <b>c.</b> $-\frac{1}{8}$ <b>d.</b> $-\frac{1}{2}$                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |
|      | 3.                                                                                                                                                                                                                                                                                     | Find the slope of the function: $f(x) = 7 - 3x$<br>a3 b12 c. 6 d6                                                                                                                                                                                                                                                                                                     | 3 |  |  |  |  |  |
|      | 4.                                                                                                                                                                                                                                                                                     | Given $g(x) = 4x - 1$ and $h(x) = 2x^2$ , find the function: $g[h(x)]$<br>a. $4x^2 - 1$ b. $7x^2$ c. $8x^2 - 2x$ d. $8x^2 - 1$                                                                                                                                                                                                                                        | 4 |  |  |  |  |  |
|      | 5.                                                                                                                                                                                                                                                                                     | Solve $3x^2 + x - 10 \le 0$ .<br>a. $-5 \le x \le \frac{2}{3}$ b. $-2 \le x \le \frac{5}{3}$<br>c. $2 \ge x \ge -\frac{5}{3}$ d. $2 \le x \le \frac{5}{3}$                                                                                                                                                                                                            | 5 |  |  |  |  |  |
|      | 6.                                                                                                                                                                                                                                                                                     | A circular gear turns $120^{\circ}$ per hour. Through how many radians<br>does it turn in a 24-hour day?<br>a. 8 b. $16\pi$ c. $\frac{2}{3}\pi$ d. 12                                                                                                                                                                                                                 | 6 |  |  |  |  |  |
|      | 7.                                                                                                                                                                                                                                                                                     | Solve the equation; domain $0^{0} \le \theta \le 360^{0}$ . Answer to the nearest whole degree: $2 \sin \theta - \sqrt{3} = 0$ .<br>a. $\theta = 60^{0}$ , $120^{0}$ b. $\theta = 40^{0}$ , $80^{0}$ c. $\theta = 120^{0}$ , $360^{0}$ d. $\theta = 90^{0}$                                                                                                           | 7 |  |  |  |  |  |
|      | <ul> <li>8. A rock weighing 25 pounds rests on a hill that makes an angle of 30° with the horizontal. How much of the friction force is needed to prevent the rock from rolling down the hill?</li> <li>a. 10 lbs</li> <li>b. 12.5 lbs</li> <li>c. 15 lbs</li> <li>d. 18 lb</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                       |   |  |  |  |  |  |
|      | 9.                                                                                                                                                                                                                                                                                     | Express the Cartesian equation in polar equation form:<br>2x - 3y + 4 = 0<br>a. $r(2 \cos \theta - 3 \sin \theta) + 4 = 0$<br>b. $r(3 \cos \theta - 2 \sin \theta) + 4 = 0$<br>c. $r(3 \sin \theta - 2 \cos \theta) - 4 = 0$<br>b. $r(\cos \theta - \sin \theta) + 4 = 0$<br>c. $r(\cos \theta - \sin \theta) + 4 = 0$<br>c. $r(\cos \theta - 2 \sin \theta) + 4 = 0$ | 9 |  |  |  |  |  |
|      | 10.                                                                                                                                                                                                                                                                                    | In how many ways can 6 campers sit around a campfire? 1<br>a. 25 b. 600 c. 30 d. 120                                                                                                                                                                                                                                                                                  | 0 |  |  |  |  |  |

| m∠<br>Degrees                                    | ∠θ<br>Radians                                               | sin θ                                                       | csc θ                                                       | tan θ                                                       | cot θ                                                       | sec θ                                              | cos θ                                                       |                                                                    |                                             |
|--------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|
| 0° 00′                                           | .0000                                                       | .0000                                                       | Undefined                                                   | .0000                                                       | Undefined                                                   | 1.000                                              | 1.0000                                                      | 1.5708                                                             | 90° 00'                                     |
| 10′                                              | .0029                                                       | .0029                                                       | 343.8                                                       | .0029                                                       | 343.8                                                       | 1.000                                              | 1.0000                                                      | 1.5679                                                             | 50'                                         |
| 20′                                              | .0058                                                       | .0058                                                       | 171.9                                                       | .0058                                                       | 171.9                                                       | 1.000                                              | 1.0000                                                      | 1.5650                                                             | 40'                                         |
| 30′                                              | .0087                                                       | .0087                                                       | 114.6                                                       | .0087                                                       | 114.6                                                       | 1.000                                              | 1.0000                                                      | 1.5621                                                             | 30'                                         |
| 40′                                              | .0116                                                       | .0116                                                       | 85.95                                                       | .0116                                                       | 85.94                                                       | 1.000                                              | .9999                                                       | 1.5592                                                             | 20'                                         |
| 50'<br>1° 00'<br>10'<br>20'<br>30'<br>40'<br>50' | .0145<br>.0175<br>.0204<br>.0233<br>.0262<br>.0291<br>.0320 | .0145<br>.0175<br>.0204<br>.0233<br>.0262<br>.0291<br>.0320 | 68.76<br>57.30<br>49.11<br>42.98<br>38.20<br>34.38<br>31.26 | .0145<br>.0175<br>.0204<br>.0233<br>.0262<br>.0291<br>.0320 | 68.75<br>57.29<br>49.10<br>42.96<br>38.19<br>34.37<br>31.24 | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | .9999<br>.9998<br>.9998<br>.9997<br>.9997<br>.9996<br>.9995 | 1.5563<br>1.5533<br>1.5504<br>1.5475<br>1.5446<br>1.5417<br>1.5388 | 10'<br>89° 00'<br>50'<br>40'<br>30'<br>20'  |
| 2° 00′                                           | .0349                                                       | .0349                                                       | 28.65                                                       | .0349                                                       | 28.64                                                       | 1.001                                              | .9994                                                       | 1.5359                                                             | 88° 00'                                     |
| 10′                                              | .0378                                                       | .0378                                                       | 26.45                                                       | .0378                                                       | 26.43                                                       | 1.001                                              | .9993                                                       | 1.5330                                                             | 50'                                         |
| 20′                                              | .0407                                                       | .0407                                                       | 24.56                                                       | .0407                                                       | 24.54                                                       | 1.001                                              | .9992                                                       | 1.5301                                                             | 40'                                         |
| 30′                                              | .0436                                                       | .0436                                                       | 22.93                                                       | .0437                                                       | 22.90                                                       | 1.001                                              | .9990                                                       | 1.5272                                                             | 30'                                         |
| 40′                                              | .0465                                                       | .0465                                                       | 21.49                                                       | .0466                                                       | 21.47                                                       | 1.001                                              | .9989                                                       | 1.5243                                                             | 20'                                         |
| 50′                                              | .0495                                                       | .0494                                                       | 20.23                                                       | .0495                                                       | 20.21                                                       | 1.001                                              | .9988                                                       | 1.5213                                                             | 10'                                         |
| 3° 00′                                           | .0524                                                       | .0523                                                       | 19.11                                                       | .0524                                                       | 19.08                                                       | 1.001                                              | .9986                                                       | 1.5184                                                             | 87° 00'                                     |
| 10′                                              | .0553                                                       | .0552                                                       | 18.10                                                       | .0553                                                       | 18.07                                                       | 1.002                                              | .9985                                                       | 1.5155                                                             | 50'                                         |
| 20′                                              | .0582                                                       | .0581                                                       | 17.20                                                       | .0582                                                       | 17.17                                                       | 1.002                                              | .9983                                                       | 1.5126                                                             | 40'                                         |
| 30′                                              | .0611                                                       | .0610                                                       | 16.38                                                       | .0612                                                       | 16.35                                                       | 1.002                                              | .9981                                                       | 1.5097                                                             | 30'                                         |
| 40′                                              | .0640                                                       | .0640                                                       | 15.64                                                       | .0641                                                       | 15.60                                                       | 1.002                                              | .9980                                                       | 1.5068                                                             | 20'                                         |
| 50′                                              | .0669                                                       | .0669                                                       | 14.96                                                       | .0670                                                       | 14.92                                                       | 1.002                                              | .9978                                                       | 1.5039                                                             | 10'                                         |
| 4° 00′                                           | .0698                                                       | .0698                                                       | 14.34                                                       | .0699                                                       | 14.30                                                       | 1.002                                              | .9976                                                       | 1.5010                                                             | 86° 00'                                     |
| 10′                                              | .0727                                                       | .0727                                                       | 13.76                                                       | .0729                                                       | 13.73                                                       | 1.003                                              | .9974                                                       | 1.4981                                                             | 50'                                         |
| 20′                                              | .0756                                                       | .0756                                                       | 13.23                                                       | .0758                                                       | 13.20                                                       | 1.003                                              | .9971                                                       | 1.4952                                                             | 40'                                         |
| 30′                                              | .0785                                                       | .0785                                                       | 12.75                                                       | .0787                                                       | 12.71                                                       | 1.003                                              | .9969                                                       | 1.4923                                                             | 30'                                         |
| 40′                                              | .0814                                                       | .0814                                                       | 12.29                                                       | .0816                                                       | 12.25                                                       | 1.003                                              | .9967                                                       | 1.4893                                                             | 20'                                         |
| 50′                                              | .0844                                                       | .0843                                                       | 11.87                                                       | .0846                                                       | 11.83                                                       | 1.004                                              | .9964                                                       | 1.4864                                                             | 10'                                         |
| 5° 00′                                           | .0873                                                       | .0872                                                       | 11.47                                                       | .0875                                                       | 11.43                                                       | 1.004                                              | .9962                                                       | 1.4835                                                             | 85° 00'                                     |
| 10′                                              | .0902                                                       | .0901                                                       | 11.10                                                       | .0904                                                       | 11.06                                                       | 1.004                                              | .9959                                                       | 1.4806                                                             | 50'                                         |
| 20′                                              | .0931                                                       | .0929                                                       | 10.76                                                       | .0934                                                       | 10.71                                                       | 1.004                                              | .9957                                                       | 1.4777                                                             | 40'                                         |
| 30′                                              | .0960                                                       | .0958                                                       | 10.43                                                       | .0963                                                       | 10.39                                                       | 1.005                                              | .9954                                                       | 1.4748                                                             | 30'                                         |
| 40′                                              | .0989                                                       | .0987                                                       | 10.13                                                       | .0992                                                       | 10.08                                                       | 1.005                                              | .9951                                                       | 1.4719                                                             | 20'                                         |
| 50′                                              | .1018                                                       | .1016                                                       | 9.839                                                       | .1022                                                       | 9.788                                                       | 1.005                                              | .9948                                                       | 1.4690                                                             | 10'                                         |
| 6° 00′                                           | .1047                                                       | .1045                                                       | 9.567                                                       | .1051                                                       | 9.514                                                       | 1.006                                              | .9945                                                       | 1.4661                                                             | 84° 00'                                     |
| 10′                                              | .1076                                                       | .1074                                                       | 9.309                                                       | .1080                                                       | 9.255                                                       | 1.006                                              | .9942                                                       | 1.4632                                                             | 50'                                         |
| 20′                                              | .1105                                                       | .1103                                                       | 9.065                                                       | .1110                                                       | 9.010                                                       | 1.006                                              | .9939                                                       | 1.4603                                                             | 40'                                         |
| 30′                                              | .1134                                                       | .1132                                                       | 8.834                                                       | .1139                                                       | 8.777                                                       | 1.006                                              | .9936                                                       | 1.4573                                                             | 30'                                         |
| 40′                                              | .1164                                                       | .1161                                                       | 8.614                                                       | .1169                                                       | 8.556                                                       | 1.007                                              | .9932                                                       | 1.4544                                                             | 20'                                         |
| 50′                                              | .1193                                                       | .1190                                                       | 8.405                                                       | .1198                                                       | 8.345                                                       | 1.007                                              | .9929                                                       | 1.4515                                                             | 10'                                         |
| 7° 00′<br>10′<br>20′<br>30′<br>40′<br>50′        | .1222<br>.1251<br>.1280<br>.1309<br>.1338<br>.1367          | .1219<br>.1248<br>.1276<br>.1305<br>.1334<br>.1363          | 8.206<br>8.016<br>7.834<br>7.661<br>7.496<br>7.337          | .1228<br>.1257<br>.1287<br>.1317<br>.1346<br>.1376          | 8.144<br>7.953<br>7.770<br>7.596<br>7.429<br>7.269          | 1.008<br>1.008<br>1.009<br>1.009<br>1.009          | .9925<br>.9922<br>.9918<br>.9914<br>.9911<br>.9907          | 1.4486<br>1.4457<br>1.4428<br>1.4399<br>1.4370<br>1.4341           | 83° 00''<br>50'<br>40'<br>30'<br>20'<br>10' |
| 8° 00'                                           | .1396                                                       | .1392                                                       | 7.185                                                       | .1405                                                       | 7.115                                                       | 1.010                                              | .9903                                                       | 1.4312                                                             | 82° 00′                                     |
| 10'                                              | .1425                                                       | .1421                                                       | 7.040                                                       | .1435                                                       | 6.968                                                       | 1.010                                              | .9899                                                       | 1.4283                                                             | 50′                                         |
| 20'                                              | .1454                                                       | .1449                                                       | 6.900                                                       | .1465                                                       | 6.827                                                       | 1.011                                              | .9894                                                       | 1.4254                                                             | 40′                                         |
| 30'                                              | .1484                                                       | .1478                                                       | 6.765                                                       | .1495                                                       | 6.691                                                       | 1.011                                              | .9890                                                       | 1.4224                                                             | 30′                                         |
| 40'                                              | .1513                                                       | .1507                                                       | 6.636                                                       | .1524                                                       | 6.561                                                       | 1.012                                              | .9886                                                       | 1.4195                                                             | 20′                                         |
| 50'                                              | .1542                                                       | .1536                                                       | 6.512                                                       | .1554                                                       | 6.435                                                       | 1.012                                              | .9881                                                       | 1.4166                                                             | 10′                                         |
| 9° 00′                                           | .1571                                                       | .1564<br><b>cos θ</b>                                       | 6.392<br>sec θ                                              | .1584<br>cot θ                                              | 6.314<br>tan θ                                              | 1.012<br>csc θ                                     | .9877<br>sin θ                                              | 1.4137<br>Radians                                                  | 81° 00'<br>Degrees                          |
|                                                  |                                                             |                                                             |                                                             |                                                             |                                                             |                                                    |                                                             | m,                                                                 | <i>∠</i> θ                                  |

| m∠<br>Degrees | θ<br>Radians | sin θ          | csc θ          | tan θ          | $\cot \theta$  | sec $	heta$    | cos θ          |                                                                                         |                          |
|---------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------------------------------------------------------------------------------|--------------------------|
| 9° 00′        | .1571        | .1564          | 6.392          | .1584          | 6.314          | 1.012          | .9877          | 1.4137                                                                                  | 81° 00'                  |
| 10′           | .1600        | .1593          | 6.277          | .1614          | 6.197          | 1.013          | .9872          | 1.4108                                                                                  | 50'                      |
| 20′           | .1629        | .1622          | 6.166          | .1644          | 6.084          | 1.013          | .9868          | 1.4079                                                                                  | 40'                      |
| 30′           | .1658        | .1650          | 6.059          | .1673          | 5.976          | 1.014          | .9863          | 1.4050                                                                                  | 30'                      |
| 40′           | .1687        | .1679          | 5.955          | .1703          | 5.871          | 1.014          | .9858          | 1.4021                                                                                  | 20'                      |
| 50′           | .1716        | .1708          | 5.855          | .1733          | 5.769          | 1.015          | .9853          | 1.3992                                                                                  | 10'                      |
| 10° 00′       | .1745        | .1736          | 5.759          | .1763          | 5.671          | 1.015          | .9848          | 1.3963                                                                                  | 80° 00'                  |
| 10′           | .1774        | .1765          | 5.665          | .1793          | 5.576          | 1.016          | .9843          | 1.3934                                                                                  | 50'                      |
| 20′           | .1804        | .1794          | 5.575          | .1823          | 5.485          | 1.016          | .9838          | 1.3904                                                                                  | 40'                      |
| 30′           | .1833        | .1822          | 5.487          | .1853          | 5.396          | 1.017          | .9833          | 1.3875                                                                                  | 30'                      |
| 40′           | .1862        | .1851          | 5.403          | .1883          | 5.309          | 1.018          | .9827          | 1.3846                                                                                  | 20'                      |
| 50′           | .1891        | .1880          | 5.320          | .1914          | 5.226          | 1.018          | .9822          | 1.3817                                                                                  | 10'                      |
| 11° 00′       | .1920        | .1908          | 5.241          | .1944          | 5.145          | 1.019          | .9816          | 1.3788                                                                                  | 79° 00'                  |
| 10′           | .1949        | .1937          | 5.164          | .1974          | 5.066          | 1.019          | .9811          | 1.3759                                                                                  | 50'                      |
| 20′           | .1978        | .1965          | 5.089          | .2004          | 4.989          | 1.020          | .9805          | 1.3730                                                                                  | 40'                      |
| 30′           | .2007        | .1994          | 5.016          | .2035          | 4.915          | 1.020          | .9799          | 1.3701                                                                                  | 30'                      |
| 40′           | .2036        | .2022          | 4.945          | .2065          | 4.843          | 1.021          | .9793          | 1.3672                                                                                  | 20'                      |
| 50′           | .2065        | .2051          | 4.876          | .2095          | 4.773          | 1.022          | .9787          | 1.3643                                                                                  | 10'                      |
| 12° 00′       | .2094        | .2079          | 4.810          | .2126          | 4.705          | 1.022          | .9781          | $\begin{array}{c} 1.3614 \\ 1.3584 \\ 1.3555 \\ 1.3526 \\ 1.3497 \\ 1.3468 \end{array}$ | 78° 00'                  |
| 10′           | .2123        | .2108          | 4.745          | .2156          | 4.638          | 1.023          | .9775          |                                                                                         | 50'                      |
| 20′           | .2153        | .2136          | 4.682          | .2186          | 4.574          | 1.024          | .9769          |                                                                                         | 40'                      |
| 30′           | .2182        | .2164          | 4.620          | .2217          | 4.511          | 1.024          | .9763          |                                                                                         | 30'                      |
| 40′           | .2211        | .2193          | 4.560          | .2247          | 4.449          | 1.025          | .9757          |                                                                                         | 20'                      |
| 50′           | .2240        | .2221          | 4.502          | .2247          | 4.390          | 1.026          | .9750          |                                                                                         | 10'                      |
| 13° 00′       | .2269        | .2250          | 4.445          | .2309          | 4.331          | 1.026          | .9744          | 1.3439                                                                                  | 77° 00'                  |
| 10′           | .2298        | .2278          | 4.390          | .2339          | 4.275          | 1.027          | .9737          | 1.3410                                                                                  | 50'                      |
| 20′           | .2327        | .2306          | 4.336          | .2370          | 4.219          | 1.028          | .9730          | 1.3381                                                                                  | 40'                      |
| 30′           | .2356        | .2334          | 4.284          | .2401          | 4.165          | 1.028          | .9724          | 1.3352                                                                                  | 30'                      |
| 40′           | .2385        | .2363          | 4.232          | .2432          | 4.113          | 1.029          | .9717          | 1.3323                                                                                  | 20'                      |
| 50′           | .2414        | .2391          | 4.182          | .2462          | 4.061          | 1.030          | .9710          | 1.3294                                                                                  | 10'                      |
| 14° 00′       | .2443        | .2419          | 4.134          | .2493          | 4.011          | 1.031          | .9703          | 1.3265                                                                                  | 76° 00'                  |
| 10′           | .2473        | .2447          | 4.086          | .2524          | 3.962          | 1.031          | .9696          | 1.3235                                                                                  | 50'                      |
| 20′           | .2502        | .2476          | 4.039          | .2555          | 3.914          | 1.032          | .9689          | 1.3206                                                                                  | 40'                      |
| 30′           | .2531        | .2504          | 3.994          | .2586          | 3.867          | 1.033          | .9681          | 1.3177                                                                                  | 30'                      |
| 40′           | .2560        | .2532          | 3.950          | .2617          | 3.821          | 1.034          | .9674          | 1.3148                                                                                  | 20'                      |
| 50′           | .2589        | .2560          | 3.906          | .2648          | 3.776          | 1.034          | .9667          | 1.3119                                                                                  | 10'                      |
| 15° 00′       | .2618        | .2588          | 3.864          | .2679          | 3.732          | 1.035          | .9659          | 1.3090                                                                                  | 75° 00'                  |
| 10′           | .2647        | .2616          | 3.822          | .2711          | 3.689          | 1.036          | .9652          | 1.3061                                                                                  | 50'                      |
| 20′           | .2676        | .2644          | 3.782          | .2742          | 3.647          | 1.037          | .9644          | 1.3032                                                                                  | 40'                      |
| 30′           | .2705        | .2672          | 3.742          | .2773          | 3.606          | 1.038          | .9636          | 1.3003                                                                                  | 30'                      |
| 40′           | .2734        | .2700          | 3.703          | .2805          | 3.566          | 1.039          | .9628          | 1.2974                                                                                  | 20'                      |
| 50′           | .2763        | .2728          | 3.665          | .2836          | 3.526          | 1.039          | .9621          | 1.2945                                                                                  | 10'                      |
| 16° 00′       | .2793        | .2756          | 3.628          | .2867          | 3.487          | 1.040          | .9613          | 1.2915                                                                                  | 74° 00'                  |
| 10′           | .2822        | .2784          | 3.592          | .2899          | 3.450          | 1.041          | .9605          | 1.2886                                                                                  | 50''                     |
| 20′           | .2851        | .2812          | 3.556          | .2931          | 3.412          | 1.042          | .9596          | 1.2857                                                                                  | 40'                      |
| 30′           | .2880        | .2840          | 3.521          | .2962          | 3.376          | 1.043          | .9588          | 1.2828                                                                                  | 30'                      |
| 40′           | .2909        | .2868          | 3.487          | .2994          | 3.340          | 1.044          | .9580          | 1.2799                                                                                  | 20'                      |
| 50′           | .2938        | .2896          | 3.453          | .3026          | 3.305          | 1.045          | .9572          | 1.2770                                                                                  | 10'                      |
| 17° 00′       | .2967        | .2924          | 3.420          | .3057          | 3.271          | 1.046          | .9563          | 1.2741                                                                                  | 73° 00'                  |
| 10′           | .2996        | .2952          | 3.388          | .3089          | 3.237          | 1.047          | .9555          | 1.2712                                                                                  | 50'                      |
| 20′           | .3025        | .2979          | 3.357          | .3121          | 3.204          | 1.048          | .9546          | 1.2683                                                                                  | 40'                      |
| 30′           | .3054        | .3007          | 3.326          | .3153          | 3.172          | 1.049          | .9537          | 1.2654                                                                                  | 30'                      |
| 40′           | .3083        | .3035          | 3.295          | .3185          | 3.140          | 1.049          | .9528          | 1.2625                                                                                  | 20'                      |
| 50′           | .3113        | .3062          | 3.265          | .3217          | 3.108          | 1.050          | .9520          | 1.2595                                                                                  | 10'                      |
| 18° 00′       | .3142        | .3090<br>cos θ | 3.236<br>sec θ | .3249<br>cot θ | 3.078<br>tan θ | 1.051<br>csc θ | .9511<br>sin θ | 1.2566<br>Radians<br>m.                                                                 | 72° 00′<br>Degreeι<br>∠θ |

| m ∠                                               | άθ<br>Develience                                            | in A                                                        |                                                             | 4                                                          |                                                             |                                                             | 0                                                           |                                                                    |                                            |
|---------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|
| 18° 00'<br>10'<br>20'<br>30'                      | .3142<br>.3171<br>.3200<br>.3229<br>.3258                   | .3090<br>.3118<br>.3145<br>.3173<br>.3201                   | 3.236<br>3.207<br>3.179<br>3.152<br>3.124                   | .3249<br>.3281<br>.3314<br>.3346<br>.3378                  | 3.078<br>3.047<br>3.018<br>2.989<br>2.960                   | 1.051<br>1.052<br>1.053<br>1.054<br>1.056                   | .9511<br>.9502<br>.9492<br>.9483<br>9474                    | 1.2566<br>1.2537<br>1.2508<br>1.2479<br>1.2450                     | 72° 00'<br>50'<br>40'<br>30'               |
| 50'<br>19° 00'<br>10'<br>20'<br>30'<br>40'<br>50' | .3287<br>.3316<br>.3345<br>.3374<br>.3403<br>.3432<br>.3462 | .3228<br>.3256<br>.3283<br>.3311<br>.3338<br>.3365<br>.3393 | 3.098<br>3.072<br>3.046<br>3.021<br>2.996<br>2.971<br>2.947 | .3411<br>.3443<br>.3476<br>.3508<br>.3541<br>.3574<br>3607 | 2.932<br>2.904<br>2.877<br>2.850<br>2.824<br>2.798<br>2.773 | 1.057<br>1.058<br>1.059<br>1.060<br>1.061<br>1.062          | .9465<br>.9455<br>.9446<br>.9436<br>.9426<br>.9417<br>9407  | 1.2421<br>1.2392<br>1.2363<br>1.2334<br>1.2305<br>1.2275           | 10'<br>71° 00'<br>50'<br>40'<br>30'<br>20' |
| 20° 00'<br>10'<br>20'<br>30'<br>40'<br>50'        | .3491<br>.3520<br>.3549<br>.3578<br>.3607<br>.3636          | .3420<br>.3448<br>.3475<br>.3502<br>.3529<br>.3557          | 2.924<br>2.901<br>2.878<br>2.855<br>2.833<br>2.812          | .3640<br>.3673<br>.3706<br>.3739<br>.3772<br>.3805         | 2.743<br>2.723<br>2.699<br>2.675<br>2.651<br>2.628          | 1.063<br>1.064<br>1.065<br>1.066<br>1.068<br>1.069<br>1.070 | .9307<br>.9387<br>.9387<br>.9377<br>.9367<br>.9356<br>.9346 | 1.2240<br>1.2217<br>1.2188<br>1.2159<br>1.2130<br>1.2101<br>1.2072 | 70° 00′<br>50′<br>40′<br>30′<br>20′<br>10′ |
| 21° 00'                                           | .3665                                                       | .3584                                                       | 2.790                                                       | .3839                                                      | 2.605                                                       | 1.071                                                       | .9336                                                       | 1.2043                                                             | 69° 00'                                    |
| 10'                                               | .3694                                                       | .3611                                                       | 2.769                                                       | .3872                                                      | 2.583                                                       | 1.072                                                       | .9325                                                       | 1.2014                                                             | 50'                                        |
| 20'                                               | .3723                                                       | .3638                                                       | 2.749                                                       | .3906                                                      | 2.560                                                       | 1.074                                                       | .9315                                                       | 1.1985                                                             | 40'                                        |
| 30'                                               | .3752                                                       | .3665                                                       | 2.729                                                       | .3939                                                      | 2.539                                                       | 1.075                                                       | .9304                                                       | 1.1956                                                             | 30'                                        |
| 40'                                               | .3782                                                       | .3692                                                       | 2.709                                                       | .3973                                                      | 2.517                                                       | 1.076                                                       | .9293                                                       | 1.1926                                                             | 20'                                        |
| 50'                                               | .3811                                                       | .3719                                                       | 2.689                                                       | .4006                                                      | 2.496                                                       | 1.077                                                       | .9283                                                       | 1.1897                                                             | 10'                                        |
| 22° 00′                                           | .3840                                                       | .3746                                                       | 2.669                                                       | .4040                                                      | 2.475                                                       | 1.079                                                       | .9272                                                       | 1.1868                                                             | 68° 00'                                    |
| 10′                                               | .3869                                                       | .3773                                                       | 2.650                                                       | .4074                                                      | 2.455                                                       | 1.080                                                       | .9261                                                       | 1.1839                                                             | 50'                                        |
| 20′                                               | .3898                                                       | .3800                                                       | 2.632                                                       | .4108                                                      | 2.434                                                       | 1.081                                                       | .9250                                                       | 1.1810                                                             | 40'                                        |
| 30′                                               | .3927                                                       | .3827                                                       | 2.613                                                       | .4142                                                      | 2.414                                                       | 1.082                                                       | .9239                                                       | 1.1781                                                             | 30'                                        |
| 40′                                               | .3956                                                       | .3854                                                       | 2.595                                                       | .4176                                                      | 2.394                                                       | 1.084                                                       | .9228                                                       | 1.1752                                                             | 20'                                        |
| 50′                                               | .3985                                                       | .3881                                                       | 2.577                                                       | .4210                                                      | 2.375                                                       | 1.085                                                       | .9216                                                       | 1.1723                                                             | 10'                                        |
| 23° 00′                                           | .4014                                                       | .3907                                                       | 2.559                                                       | .4245                                                      | 2.356                                                       | 1.086                                                       | .9205                                                       | 1.1694                                                             | 67° 00'                                    |
| 10′                                               | .4043                                                       | .3934                                                       | 2.542                                                       | .4279                                                      | 2.337                                                       | 1.088                                                       | .9194                                                       | 1.1665                                                             | 50'                                        |
| 20′                                               | .4072                                                       | .3961                                                       | 2.525                                                       | .4314                                                      | 2.318                                                       | 1.089                                                       | .9182                                                       | 1.1636                                                             | 40'                                        |
| 30′                                               | .4102                                                       | .3987                                                       | 2.508                                                       | .4348                                                      | 2.300                                                       | 1.090                                                       | .9171                                                       | 1.1606                                                             | 30'                                        |
| 40′                                               | .4131                                                       | .4014                                                       | 2.491                                                       | .4383                                                      | 2.282                                                       | 1.092                                                       | .9159                                                       | 1.1577                                                             | 20'                                        |
| 50′                                               | .4160                                                       | .4041                                                       | 2.475                                                       | .4417                                                      | 2.264                                                       | 1.093                                                       | .9147                                                       | 1.1548                                                             | 10'                                        |
| 24° 00′                                           | .4189                                                       | .4067                                                       | 2.459                                                       | .4452                                                      | 2.246                                                       | 1.095                                                       | .9135                                                       | 1.1519                                                             | 66° 00'                                    |
| 10′                                               | .4218                                                       | .4094                                                       | 2.443                                                       | .4487                                                      | 2.229                                                       | 1.096                                                       | .9124                                                       | 1.1490                                                             | 50'                                        |
| 20′                                               | .4247                                                       | .4120                                                       | 2.427                                                       | .4522                                                      | 2.211                                                       | 1.097                                                       | .9112                                                       | 1.1461                                                             | 40'                                        |
| 30′                                               | .4276                                                       | .4147                                                       | 2.411                                                       | .4557                                                      | 2.194                                                       | 1.099                                                       | .9100                                                       | 1.1432                                                             | 30'                                        |
| 40′                                               | .4305                                                       | .4173                                                       | 2.396                                                       | .4592                                                      | 2.177                                                       | 1.100                                                       | .9088                                                       | 1.1403                                                             | 20'                                        |
| 50′                                               | .4334                                                       | .4200                                                       | 2.381                                                       | .4628                                                      | 2.161                                                       | 1.102                                                       | .9075                                                       | 1.1374                                                             | 10'                                        |
| 25° 00′                                           | .4363                                                       | .4226                                                       | 2.366                                                       | .4663                                                      | 2.145                                                       | 1.103                                                       | .9063                                                       | 1.1345                                                             | 65° 00'                                    |
| 10′                                               | .4392                                                       | .4253                                                       | 2.352                                                       | .4699                                                      | 2.128                                                       | 1.105                                                       | .9051                                                       | 1.1316                                                             | 50'                                        |
| 20′                                               | .4422                                                       | .4279                                                       | 2.337                                                       | .4734                                                      | 2.112                                                       | 1.106                                                       | .9038                                                       | 1.1286                                                             | 40'                                        |
| 30′                                               | .4451                                                       | .4305                                                       | 2.323                                                       | .4770                                                      | 2.097                                                       | 1.108                                                       | .9026                                                       | 1.1257                                                             | 30'                                        |
| 40′                                               | .4480                                                       | .4331                                                       | 2.309                                                       | .4806                                                      | 2.081                                                       | 1.109                                                       | .9013                                                       | 1.1228                                                             | 20'                                        |
| 50′                                               | .4509                                                       | .4358                                                       | 2.295                                                       | .4841                                                      | 2.066                                                       | 1.111                                                       | .9001                                                       | 1.1199                                                             | 10'                                        |
| 26° 00'                                           | .4538                                                       | .4384                                                       | 2.281                                                       | .4877                                                      | 2.050                                                       | 1.113                                                       | .8988                                                       | 1.1170                                                             | 64° 00'                                    |
| 10'                                               | .4567                                                       | .4410                                                       | 2.268                                                       | .4913                                                      | 2.035                                                       | 1.114                                                       | .8975                                                       | 1.1141                                                             | 50'                                        |
| 20'                                               | .4596                                                       | .4436                                                       | 2.254                                                       | .4950                                                      | 2.020                                                       | 1.116                                                       | .8962                                                       | 1.1112                                                             | 40'                                        |
| 30'                                               | .4625                                                       | .4462                                                       | 2.241                                                       | .4986                                                      | 2.006                                                       | 1.117                                                       | .8949                                                       | 1.1083                                                             | 30'                                        |
| 40'                                               | .4654                                                       | .4488                                                       | 2.228                                                       | .5022                                                      | 1.991                                                       | 1.119                                                       | .8936                                                       | 1.1054                                                             | 20'                                        |
| 50'                                               | .4683                                                       | .4514                                                       | 2.215                                                       | .5059                                                      | 1.977                                                       | 1.121                                                       | .8923                                                       | 1.1025                                                             | 10'                                        |
| 27° 00′                                           | .4712                                                       | .4540<br>cos θ                                              | 2.203<br>sec θ                                              | .5095<br>cot θ                                             | 1.963<br>tan θ                                              | 1.122<br>csc θ                                              | .8910<br>sin θ                                              | 1.0996<br>Radians<br>m                                             | 63° 00'<br>Degrees<br>΄.θ                  |

| m∠                                         | θ                                                          |                                                    |                                                             |                                                             |                                                    |                                                    |                                                             |                                                                    |                                            |
|--------------------------------------------|------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|
| Degrees                                    | Radians                                                    | sin θ                                              | csc Ø                                                       | tan θ                                                       | cot θ                                              | sec 0                                              | cos θ                                                       |                                                                    |                                            |
| 27° 00′<br>10′<br>20′<br>30′<br>40′<br>50′ | .4712<br>.4741<br>.4771<br>.4800<br>.4829<br>.4858<br>4887 | .4540<br>.4566<br>.4592<br>.4617<br>.4643<br>.4669 | 2.203<br>2.190<br>2.178<br>2.166<br>2.154<br>2.142<br>2.130 | .5095<br>.5132<br>.5169<br>.5206<br>.5243<br>.5280<br>.5317 | 1.963<br>1.949<br>1.935<br>1.921<br>1.907<br>1.894 | 1.122<br>1.124<br>1.126<br>1.127<br>1.129<br>1.131 | .8910<br>.8897<br>.8884<br>.8870<br>.8857<br>.8843<br>.8843 | 1.0996<br>1.0966<br>1.0937<br>1.0908<br>1.0879<br>1.0850<br>1.0821 | 63° 00'<br>50'<br>40'<br>30'<br>20'<br>10' |
| 20<br>10'<br>20'<br>30'<br>40'<br>50'      | .4916<br>.4945<br>.4974<br>.5003<br>.5032                  | .4095<br>.4720<br>.4746<br>.4772<br>.4797<br>.4823 | 2.130<br>2.118<br>2.107<br>2.096<br>2.085<br>2.074          | .5354<br>.5352<br>.5430<br>.5467<br>.5505                   | 1.861<br>1.868<br>1.855<br>1.842<br>1.829<br>1.816 | 1.133<br>1.134<br>1.136<br>1.138<br>1.140<br>1.142 | .882)<br>.8816<br>.8802<br>.8788<br>.8774<br>.8760          | 1.0792<br>1.0763<br>1.0734<br>1.0705<br>1.0676                     | 50'<br>50'<br>40'<br>30'<br>20'<br>10'     |
| 29° 00'                                    | .5061                                                      | .4848                                              | 2.063                                                       | .5543                                                       | 1.804                                              | 1.143                                              | .8746                                                       | 1.0647                                                             | 61° 00'                                    |
| 10'                                        | .5091                                                      | .4874                                              | 2.052                                                       | .5581                                                       | 1.792                                              | 1.145                                              | .8732                                                       | 1.0617                                                             | 50'                                        |
| 20'                                        | .5120                                                      | .4899                                              | 2.041                                                       | .5619                                                       | 1.780                                              | 1.147                                              | .8718                                                       | 1.0588                                                             | 40'                                        |
| 30'                                        | .5149                                                      | .4924                                              | 2.031                                                       | .5658                                                       | 1.767                                              | 1.149                                              | .8704                                                       | 1.0559                                                             | 30'                                        |
| 40'                                        | .5178                                                      | .4950                                              | 2.020                                                       | .5696                                                       | 1.756                                              | 1.151                                              | .8689                                                       | 1.0530                                                             | 20'                                        |
| 50'                                        | .5207                                                      | .4975                                              | 2.010                                                       | .5735                                                       | 1.744                                              | 1.153                                              | .8675                                                       | 1.0501                                                             | 10'                                        |
| 30° 00′                                    | .5236                                                      | .5000                                              | 2.000                                                       | .5774                                                       | 1.732                                              | 1.155                                              | .8660                                                       | 1.0472                                                             | 60° 00'                                    |
| 10′                                        | .5265                                                      | .5025                                              | 1.990                                                       | .5812                                                       | 1.720                                              | 1.157                                              | .8646                                                       | 1.0443                                                             | 50'                                        |
| 20′                                        | .5294                                                      | .5050                                              | 1.980                                                       | .5851                                                       | 1.709                                              | 1.159                                              | .8631                                                       | 1.0414                                                             | 40'                                        |
| 30′                                        | .5323                                                      | .5075                                              | 1.970                                                       | .5890                                                       | 1.698                                              | 1.161                                              | .8616                                                       | 1.0385                                                             | 30'                                        |
| 40′                                        | .5352                                                      | .5100                                              | 1.961                                                       | .5930                                                       | 1.686                                              | 1.163                                              | .8601                                                       | 1.0356                                                             | 20'                                        |
| 50′                                        | .5381                                                      | .5125                                              | 1.951                                                       | .5969                                                       | 1.675                                              | 1.165                                              | .8587                                                       | 1.0327                                                             | 10'                                        |
| 31° 00'                                    | .5411                                                      | .5150                                              | 1.942                                                       | .6009                                                       | 1.664                                              | 1.167                                              | .8572                                                       | 1.0297                                                             | 59° 00′                                    |
| 10'                                        | .5440                                                      | .5175                                              | 1.932                                                       | .6048                                                       | 1.653                                              | 1.169                                              | .8557                                                       | 1.0268                                                             | 50′                                        |
| 20'                                        | .5469                                                      | .5200                                              | 1.923                                                       | .6088                                                       | 1.643                                              | 1.171                                              | .8542                                                       | 1.0239                                                             | 40′                                        |
| 30'                                        | .5498                                                      | .5225                                              | 1.914                                                       | .6128                                                       | 1.632                                              | 1.173                                              | .8526                                                       | 1.0210                                                             | 30′                                        |
| 40'                                        | .5527                                                      | .5250                                              | 1.905                                                       | .6168                                                       | 1.621                                              | 1.175                                              | .8511                                                       | 1.0181                                                             | 20′                                        |
| 50'                                        | .5556                                                      | .5275                                              | 1.896                                                       | .6208                                                       | 1.611                                              | 1.177                                              | .8496                                                       | 1.0152                                                             | 10′                                        |
| 32° 00′                                    | .5585                                                      | .5299                                              | 1.887                                                       | .6249                                                       | 1.600                                              | 1.179                                              | .8480                                                       | 1.0123                                                             | 58° 00'                                    |
| 10′                                        | .5614                                                      | .5324                                              | 1.878                                                       | .6289                                                       | 1.590                                              | 1.181                                              | .8465                                                       | 1.0094                                                             | 50'                                        |
| 20′                                        | .5643                                                      | .5348                                              | 1.870                                                       | .6330                                                       | 1.580                                              | 1.184                                              | .8450                                                       | 1.0065                                                             | 40'                                        |
| 30′                                        | .5672                                                      | .5373                                              | 1.861                                                       | .6371                                                       | 1.570                                              | 1.186                                              | .8434                                                       | 1.0036                                                             | 30'                                        |
| 40′                                        | .5701                                                      | .5398                                              | 1.853                                                       | .6412                                                       | 1.560                                              | 1.188                                              | .8418                                                       | 1.0007                                                             | 20'                                        |
| 50′                                        | .5730                                                      | .5422                                              | 1.844                                                       | .6453                                                       | 1.550                                              | 1.190                                              | .8403                                                       | .9977                                                              | 10'                                        |
| 33° 00'                                    | .5760                                                      | .5446                                              | 1.836                                                       | .6494                                                       | 1.540                                              | 1.192                                              | .8387                                                       | .9948                                                              | 57° 00'                                    |
| 10'                                        | .5789                                                      | .5471                                              | 1.828                                                       | .6536                                                       | 1.530                                              | 1.195                                              | .8371                                                       | .9919                                                              | 50'                                        |
| 20'                                        | .5818                                                      | .5495                                              | 1.820                                                       | .6577                                                       | 1.520                                              | 1.197                                              | .8355                                                       | .9890                                                              | 40'                                        |
| 30'                                        | .5847                                                      | .5519                                              | 1.812                                                       | .6619                                                       | 1.511                                              | 1.199                                              | .8339                                                       | .9861                                                              | 30'                                        |
| 40'                                        | .5876                                                      | .5544                                              | 1.804                                                       | .6661                                                       | 1.501                                              | 1.202                                              | .8323                                                       | .9832                                                              | 20'                                        |
| 50'                                        | .5905                                                      | .5568                                              | 1.796                                                       | .6703                                                       | 1.492                                              | 1.204                                              | .8307                                                       | .9803                                                              | 10'                                        |
| 34° 00′                                    | .5934                                                      | .5592                                              | 1.788                                                       | .6745                                                       | 1.483                                              | 1.206                                              | .8290                                                       | .9774                                                              | 56° 00'                                    |
| 10′                                        | .5963                                                      | .5616                                              | 1.781                                                       | .6787                                                       | 1.473                                              | 1.209                                              | .8274                                                       | .9745                                                              | 50'                                        |
| 20′                                        | .5992                                                      | .5640                                              | 1.773                                                       | .6830                                                       | 1.464                                              | 1.211                                              | .8258                                                       | .9716                                                              | 40'                                        |
| 30′                                        | .6021                                                      | .5664                                              | 1.766                                                       | .6873                                                       | 1.455                                              | 1.213                                              | .8241                                                       | .9687                                                              | 30'                                        |
| 40′                                        | .6050                                                      | .5688                                              | 1.758                                                       | .6916                                                       | 1.446                                              | 1.216                                              | .8225                                                       | .9657                                                              | 20'                                        |
| 50′                                        | .6080                                                      | .5712                                              | 1.751                                                       | .6959                                                       | 1.437                                              | 1.218                                              | .8208                                                       | .9628                                                              | 10'                                        |
| 35° 00'                                    | .6109                                                      | .5736                                              | 1.743                                                       | .7002                                                       | 1.428                                              | 1.221                                              | .8192                                                       | .9599                                                              | 55° 00'                                    |
| 10'                                        | .6138                                                      | .5760                                              | 1.736                                                       | .7046                                                       | 1.419                                              | 1.223                                              | .8175                                                       | .9570                                                              | 50'                                        |
| 20'                                        | .6167                                                      | .5783                                              | 1.729                                                       | .7089                                                       | 1.411                                              | 1.226                                              | .8158                                                       | .9541                                                              | 40'                                        |
| 30'                                        | .6196                                                      | .5807                                              | 1.722                                                       | .7133                                                       | 1.402                                              | 1.228                                              | .8141                                                       | .9512                                                              | 30'                                        |
| 40'                                        | .6225                                                      | .5831                                              | 1.715                                                       | .7177                                                       | 1.393                                              | 1.231                                              | .8124                                                       | .9483                                                              | 20'                                        |
| 50'                                        | .6254                                                      | .5854                                              | 1.708                                                       | .7221                                                       | 1.385                                              | 1.233                                              | .8107                                                       | .9454                                                              | 10'                                        |
| 30 00                                      | .0283                                                      | .38/8<br>cos θ                                     | 1.701<br>sec θ                                              | .1265<br>cot θ                                              | 1.376<br>tan θ                                     | 1.230<br>csc θ                                     | .0090<br>sin θ                                              | .9423<br>Radians<br>m                                              | Degrees<br>∠θ                              |

| m Z            | θ       |       |             |       |       |       |             |              |               |
|----------------|---------|-------|-------------|-------|-------|-------|-------------|--------------|---------------|
| Degrees        | Radians | sin θ | csc $	heta$ | tan θ | cot θ | sec 0 | cos $	heta$ |              |               |
| 36°00′         | .6283   | .5878 | 1.701       | .7265 | 1.376 | 1.236 | .8090       | .9425        | 54° 00'       |
| 10′            | .6312   | .5901 | 1.695       | .7310 | 1.368 | 1.239 | .8073       | .9396        | 50'           |
| 20′            | .6341   | .5925 | 1.688       | .7355 | 1.360 | 1.241 | .8056       | .9367        | 40'           |
| 30′            | .6370   | .5948 | 1.681       | .7400 | 1.351 | 1.244 | .8039       | .9338        | 30'           |
| 40′            | .6400   | .5972 | 1.675       | .7445 | 1.343 | 1.247 | .8021       | .9308        | 20'           |
| 50′            | .6429   | .5972 | 1.668       | .7490 | 1.335 | 1.249 | .8004       | .9279        | 10'           |
| 37° 00′        | .6458   | .6018 | 1.662       | .7536 | 1.327 | 1.252 | .7986       | .9250        | 53° 00'       |
| 10′            | .6487   | .6041 | 1.655       | .7581 | 1.319 | 1.255 | .7969       | .9221        | 50'           |
| 20′            | .6516   | .6065 | 1.649       | .7627 | 1.311 | 1.258 | .7951       | .9192        | 40'           |
| 30′            | .6545   | .6088 | 1.643       | .7673 | 1.303 | 1.260 | .7934       | .9163        | 30'           |
| 40′            | .6574   | .6111 | 1.636       | .7720 | 1.295 | 1.263 | .7916       | .9134        | 20'           |
| 50′            | .6603   | .6134 | 1.630       | .7766 | 1.288 | 1.266 | .7898       | .9105        | 10'           |
| 38° 00'        | .6632   | .6157 | 1.624       | .7813 | 1.280 | 1.269 | .7880       | .9076        | 52° 00'       |
| 10'            | .6661   | .6180 | 1.618       | .7860 | 1.272 | 1.272 | .7862       | .9047        | 50'           |
| 20'            | .6690   | .6202 | 1.612       | .7907 | 1.265 | 1.275 | .7844       | .9018        | 40'           |
| 30'            | .6720   | .6225 | 1.606       | .7954 | 1.257 | 1.278 | .7826       | .8988        | 30'           |
| 40'            | .6749   | .6248 | 1.601       | .8002 | 1.250 | 1.281 | .7808       | .8959        | 20'           |
| 50'            | .6778   | .6271 | 1.595       | .8050 | 1.242 | 1.284 | .7790       | .8930        | 10'           |
| <b>39° 00'</b> | .6807   | .6293 | 1.589       | .8098 | 1.235 | 1.287 | .7771       | .8901        | 51° 00'       |
| 10'            | .6836   | .6316 | 1.583       | .8146 | 1.228 | 1.290 | .7753       | .8872        | 50'           |
| 20'            | .6865   | .6338 | 1.578       | .8195 | 1.220 | 1.293 | .7735       | .8843        | 40'           |
| 30'            | .6894   | .6361 | 1.572       | .8243 | 1.213 | 1.296 | .7716       | .8814        | 30'           |
| 40'            | .6923   | .6383 | 1.567       | .8292 | 1.206 | 1.299 | .7698       | .8785        | 20'           |
| 50'            | .6952   | .6406 | 1.561       | .8342 | 1.199 | 1.302 | .7679       | .8756        | 10'           |
| 40° 00'.       | .6981   | .6428 | 1.556       | .8391 | 1.192 | 1.305 | .7660       | .8727        | 50° 00'       |
| 10'            | .7010   | .6450 | 1.550       | .8441 | 1.185 | 1.309 | .7642       | .8698        | 50'           |
| 20'            | .7039   | .6472 | 1.545       | .8491 | 1.178 | 1.312 | .7623       | .8668        | 40'           |
| 30'            | .7069   | .6494 | 1.540       | .8541 | 1.171 | 1.315 | .7604       | .8639        | 30'           |
| 40'            | .7098   | .6517 | 1.535       | .8591 | 1.164 | 1.318 | .7585       | .8610        | 20'           |
| 50'            | .7127   | .6539 | 1.529       | .8642 | 1.157 | 1.322 | .7566       | .8581        | 10'           |
| 41° 00′        | .7156   | .6561 | 1.524       | .8693 | 1.150 | 1.325 | .7547       | .8552        | 49° 00'       |
| 10′            | .7185   | .6583 | 1.519       | .8744 | 1.144 | 1.328 | .7528       | .8523        | 50'           |
| 20′            | .7214   | .6604 | 1.514       | .8796 | 1.137 | 1.332 | .7509       | .8494        | 40'           |
| 30′            | .7243   | .6626 | 1.509       | .8847 | 1.130 | 1.335 | .7490       | .8465        | 30'           |
| 40′            | .7272   | .6648 | 1.504       | .8899 | 1.124 | 1.339 | .7470       | .8436        | 20'           |
| 50′            | .7301   | .6670 | 1.499       | .8952 | 1.117 | 1.342 | .7451       | .8407        | 10'           |
| 42° 00'        | .7330   | .6691 | 1.494       | .9004 | 1.111 | 1.346 | .7431       | .8378        | 48° 00'       |
| 10'            | .7359   | .6713 | 1.490       | .9057 | 1.104 | 1.349 | .7412       | .8348        | 50'           |
| 20'            | .7389   | .6734 | 1.485       | .9110 | 1.098 | 1.353 | .7392       | .8319        | 40'           |
| 30'            | .7418   | .6756 | 1.480       | .9163 | 1.091 | 1.356 | .7373       | .8290        | 30'           |
| 40'            | .7447   | .6777 | 1.476       | .9217 | 1.085 | 1.360 | .7353       | .8261        | 20'           |
| 50'            | .7476   | .6799 | 1.471       | .9271 | 1.079 | 1.364 | .7333       | .8232        | 10'           |
| 43° 00'        | .7505   | .6820 | 1.466       | .9325 | 1.072 | 1.367 | .7314       | .8203        | 47° 00'       |
| 10'            | .7534   | .6841 | 1.462       | .9380 | 1.066 | 1.371 | .7294       | .8174        | 50'           |
| 20'            | .7563   | .6862 | 1.457       | .9435 | 1.060 | 1.375 | .7274       | .8145        | 40'           |
| 30'            | .7592   | .6884 | 1.453       | .9490 | 1.054 | 1.379 | .7254       | .8116        | 30'           |
| 40'            | .7621   | .6905 | 1.448       | .9545 | 1.048 | 1.382 | .7234       | .8087        | 20'           |
| 50'            | .7650   | .6926 | 1.444       | .9601 | 1.042 | 1.386 | .7214       | .8058        | 10'           |
| 44° 00'        | .7679   | .6947 | 1.440       | .9657 | 1.036 | 1.390 | .7193       | .8029        | 46° 00'       |
| 10'            | .7709   | .6967 | 1.435       | .9713 | 1.030 | 1.394 | .7173       | .7999        | 50'           |
| 20'            | .7738   | .6988 | 1.431       | .9770 | 1.024 | 1.398 | .7153       | .7970        | 40'           |
| 30'            | .7767   | .7009 | 1.427       | .9827 | 1.018 | 1.402 | .7133       | .7941        | 30'           |
| 40'            | .7796   | .7030 | 1.423       | .9884 | 1.012 | 1.406 | .7112       | .7912        | 20'           |
| 50'            | .7825   | .7050 | 1.418       | .9942 | 1.006 | 1.410 | .7092       | .7883        | 10'           |
| 45° 00′        | .7854   | .7071 | 1.414       | 1.000 | 1.000 | 1.414 | .7071       | .7854        | 45° 00′       |
|                |         | cos Ø | sec U       | cof Ø | tan U | csc Ø | sin U       | Kadians<br>m | Legrees<br>∠θ |

#### MATHEMATICS 700-1200 Introduction

#### PLACEMENT TEST for the LIFEPAC CURRICULUM Instructions

This test is designed to aid the teacher in proper placement of the student into the LIFEPAC curriculum. It has two sections: the Student Test and the Answer Key. The Answer Key is an insert in the Student Test and may be removed when testing begins.

This is not a timed test and the student should be given an opportunity to answer each question adequately. If the student becomes bogged down and the test seems too difficult, skip to the next section. If the test is still too difficult, this child's academic skill level has been reached and testing may stop. Each test level should take no longer than one hour. Students should not use calculators for any of these tests.

Testing should begin approximately two grade levels below the student's current or just completed grade level. For example, a student entering tenth grade [1000] should begin testing at the eighth grade [800] level. This allows for proper grade level placement as well as identification of any learning gaps that the student may have.

Once the test has been administered, it is ready to be scored. The teacher or parent does all of the scoring except for those who are using one of our placement services. Use the Answer Key to mark all incorrect answers on the Student Test. Next, record the total number of **correct** answers in the box beneath the LIFEPAC number in the left hand column. When all tests have been graded, transfer the number correct by LIFEPAC to the Student Placement Worksheet on the back page of the Answer Keys. Then add the total number of points per grade level.

| Test      | Level | Test        | Level |
|-----------|-------|-------------|-------|
| 701 - 710 | 7     | 1001 - 1010 | 10    |
| 801 - 810 | 8     | 1101 - 1110 | 11    |
| 901 - 910 | 9     | 1201 - 1210 | 12    |

There are ten possible points per section. Put all answers on the blanks to the right of the questions unless instructed to do otherwise.

| 701                |               | 703 |                 | 705 |                                   | 707 | 8 1                                |
|--------------------|---------------|-----|-----------------|-----|-----------------------------------|-----|------------------------------------|
| 1.                 | 405,306       | 1.  | line segment    | 1.  | {5, 7, 9, 11}                     | 1a  | $\frac{0}{15}$ b. 73 $\frac{1}{2}$ |
| 2a.                | >             |     |                 | 2.  | b                                 | 2a. | $1 \frac{1}{2}$ b. $\frac{2}{15}$  |
| b.                 | =             | 2.  | СС              | 3.  | а                                 | 2.  | $(1)\frac{7}{7}$                   |
| c.                 | <             | 3.  | 17              |     |                                   | 3a. | 6 D. 8                             |
|                    |               | 4   | right           | 4.  | 114                               | 4a. | 1.785                              |
| 3.                 | 27            | 1.  |                 | 5.  | 8                                 | b   | 309.024                            |
| 4.                 | 44            |     |                 |     |                                   | 5a. | 35.5                               |
| 5.                 | 9             | F   | 2               | 6.  | 7 x 10 <sup>6</sup>               | b   | 19.875                             |
| 6                  | 11            | 5.  | C               | 7.  | 8                                 | 6a. | 345.1                              |
| 0.                 |               |     |                 |     |                                   | b.  | .00739                             |
| 7.                 | 9,566         | 6.  | 360°            | 8.  | 140                               | 7   | 7                                  |
| 8.                 | 1,918         |     |                 | 9   | 24                                |     |                                    |
|                    |               | 7.  | 6 in.           | ).  | ۷                                 | 8.  | 40                                 |
| 9.                 | 700           | 8.  | 18.84 in.       | 10. | b                                 | Q   | 25%                                |
| 10                 | 2 000         | 9.  | 288 sq. ft.     |     |                                   | ).  | 2370                               |
| 10.                | 2,000         |     |                 | 706 | 5 7                               |     |                                    |
|                    |               | 10. | 720°            | 1a. | 1 <del></del> b. 15 <del></del>   | 10. | \$284.38                           |
| 702                |               |     |                 | 2a  | $\frac{17}{45}$ h 1 $\frac{5}{6}$ |     |                                    |
| 7 <b>02</b><br>1a. | 7             | 704 |                 | 24. | 45 0.1 6                          | 708 |                                    |
| b.                 | 67            | 1.  | $\frac{30}{54}$ | 3.  | 26.623                            | 1.  | 3 ft.                              |
| c.                 | 469           |     |                 | 4.  | 1.02                              | 2.  | 20 in.                             |
| 2a.                | 75            | 2.  | $6\frac{3}{7}$  | 5.  | $\frac{7}{100}$                   | 3.  | \$63                               |
| b.                 | 15            | 2   |                 |     | F1                                |     |                                    |
| c.                 | 5             | 3.  | >               | 6.  | 200                               | 4   | C                                  |
| 3.                 | 27            | 4.  | 2.2             | 7   | 43                                |     |                                    |
| 4                  | 64            | 5   | 03407           |     | .10                               | 5.  | 1:5                                |
| 1.                 |               | 5.  | .034 //         | 0   | ,                                 | 6.  | $\frac{4}{9} = \frac{12}{27}$      |
| 5.                 | 5,400,000,000 | 6.  | 9:34            | 8.  | a / c                             | 7   | h                                  |
|                    |               | 7.  | $\frac{16}{25}$ |     | d                                 | 7.  | D                                  |
| 6.                 | 5,372         |     | <u> </u>        | 9.  | $7\frac{1}{4}$ min.               | 8.  | 514 mph                            |
| 7.                 | 68,096        | 8.  | .0013           |     |                                   |     |                                    |
| 8.                 | 27 R12        | 9.  | .875            |     |                                   | 9.  | 28 in.                             |
| 9.                 | 607 R6        | 2.  |                 | 10. | .3 hr. or                         |     | _0                                 |
| 10                 | 24            | 10. | 5,000 mg        |     | 18 min.                           |     |                                    |
| 10.                |               |     |                 |     |                                   | 10. | 27                                 |

| 709 |                                  | 801             |                      | 803 | 3                                               | 805    | 4                 |
|-----|----------------------------------|-----------------|----------------------|-----|-------------------------------------------------|--------|-------------------|
| 1.  | С                                | 1               | 2,005,206            | 1.  | 4                                               | 1      | 5                 |
|     |                                  | 2               | hundred              |     | 12                                              |        | 1                 |
|     |                                  |                 | thousand             | 2.  | 42                                              | 2      | 58 2              |
|     |                                  | 3.              | 4                    |     | 4                                               | C      | 10 4294           |
|     |                                  | <sup>4.</sup> – | 490,000              | 3.  | $1\frac{1}{7}$                                  | 3      | 10.4384           |
| 2.  | 9                                | 5               | 24 fish              |     |                                                 | 4      | 80.4              |
| 3.  | 8                                | 0. –            | 21 11011             | 4.  | 18:72                                           | -<br>- | 5                 |
| 4.  | 8                                |                 |                      | 5.  | $\frac{1}{8}, \frac{1}{2}, \frac{7}{12}$        | 5      | 6                 |
|     |                                  |                 |                      | ,   |                                                 |        | 23                |
| 5.  | 22                               |                 |                      |     | $\frac{5}{6}$ , $1\frac{2}{3}$ , $\frac{17}{8}$ | 6.     | $1 \frac{23}{26}$ |
|     |                                  | 6               | 75                   |     |                                                 | -      | <b>#2</b> 000     |
|     |                                  | 0.<br>7 -       |                      | 6.  | .2                                              | 7      | \$3,000           |
|     |                                  | · -             | 00 10.               | 7   | 71                                              |        |                   |
| (   |                                  | 8.              | 68 in.               | 7.  | 100                                             | 8      | 36                |
| 6.  | (-2, 5)                          | -               |                      | 8.  | 40 ft.                                          | 0      | 0.0               |
| 7.  | (4, 3)                           |                 |                      | 0.  | 10 10                                           | 9.     | 64                |
| 8.  | (-6, -4)                         | 9               | 37 in.               | 9.  | b                                               | -      |                   |
|     |                                  |                 |                      |     |                                                 | 10.    | 17.5%             |
|     |                                  |                 |                      | 10. | 10%                                             |        |                   |
| 9.  | 1                                | 10              | 1 17(4 )             |     |                                                 | 806    | 22                |
| 10. | 22                               | 10              | 1,764 m <sup>2</sup> | 804 | 1                                               | 1      | 32                |
|     |                                  | 802             |                      | 1.  | $1\frac{1}{6}$                                  | 2.     | 28                |
| 710 | 4                                | 1.              | 1.614                |     | 11                                              | 3.     | 41                |
| 1.  | 8 x 10 <sup>4</sup>              |                 | 1/011                | 2.  | $618 \frac{14}{15}$                             | -      |                   |
| 2   |                                  | 2.              | С                    |     |                                                 | 4      | 4 in 14           |
| ۷.  | >                                | -               |                      | 2   | 8                                               | _      |                   |
| 3   | а                                |                 |                      | 3.  | 35                                              | 5      | 3:10              |
| 0.  |                                  | 3               | 54                   |     | 13                                              | 6      | 5.10              |
|     |                                  |                 |                      | 4.  | 1 20                                            | 0      | 5.10              |
| 4.  | 16                               | 4               | a                    |     |                                                 | 7.     | 200               |
|     |                                  |                 |                      |     |                                                 | _      |                   |
| 5.  | 56.52 in.                        | 5.              | 17, 19, 23           | 5.  | 779.864                                         |        |                   |
|     | 7 2                              | -               | 17, 17, 20           |     |                                                 |        |                   |
| 6a. | $\frac{7}{9}$ b. 2 $\frac{2}{3}$ | 6.              | $2^2, 3^2$           | 6.  | 3.968                                           | 8      | 5, 8, 11          |
|     | 1                                | -               | ,                    |     |                                                 |        |                   |
| 7a. | $\frac{1}{6}$ b. 2               | 7               | 6                    | 7.  | 3.1056                                          | 0      | (5.2)             |
|     |                                  | _               |                      | 0   |                                                 | 9      | (-3, -2)          |
| 8.  | 6                                | 8               | 120                  | 8.  | 10                                              |        |                   |
| 0   | Dictorico                        | 9.              | $\frac{5}{6}$        | 9.  | 5                                               |        |                   |
| 9.  | equals rate                      | -               | V                    |     |                                                 |        |                   |
|     | times time                       | 10.             | $\frac{4}{5}$        | 10. | .6                                              | 10.    | 2:5               |
| 10. | 44%                              | -               |                      |     |                                                 |        |                   |

| 807     |                            | 809 |                        |
|---------|----------------------------|-----|------------------------|
| 1.      | b                          | 1.  | 82                     |
| 2.      | -15, -8, -6<br>0, 2, 5, 10 | 2.  | $\frac{2}{3}$          |
| 3.      | 32                         | 3.  | $\frac{N}{3} + 6$      |
| 4.      | 15                         | 4.  | 3N – 5                 |
| 5.      | 13                         |     | 1                      |
| 6.<br>7 | 0                          | 5.  | $2\frac{1}{2}$         |
| 8a.     | (-1, 6)                    |     |                        |
| b.      | (2, -3)                    | 6.  | 1                      |
| 9.      | -19                        | 7.  | <i>xy</i> + 2 <i>x</i> |
|         |                            | 8.  | x = -3                 |
| 10.     | -3                         | 9.  | С                      |

#### 

| 1.  | 30 sq. ft.           | 10. 8           | 40 min. or            |     |
|-----|----------------------|-----------------|-----------------------|-----|
| 2.  | 120 m <sup>2</sup>   | _               | 14 hr.                |     |
| 3.  | 25.748 cm            | <b>810</b><br>1 | 160%                  |     |
| 4.  | 19.625 sq. ft.       | 2a              | 16 b. 27              |     |
| 5.  | 9 cu. ft.            | 3               | 206.0 cm <sup>2</sup> |     |
| 6.  | С                    | 4               | 672 in. <sup>3</sup>  |     |
|     |                      | 5. <u>x</u>     | $\frac{y-4x+3y}{-12}$ |     |
| 7.  | СС                   | 6. <u>4N</u>    | J + 2 = N - 1         |     |
| 8.  | 10 yds. <sup>3</sup> | 7               | -6, 9, 0              |     |
| 9.  | СС                   | 83              | 3, 4, 5, 6            |     |
| 10. | a                    | <sup>9.</sup>   | 5 x 10 <sup>6</sup>   |     |
|     |                      | 10.             | 6                     | AK4 |

| 901 |    | 902     |    | 903 |          | 904        |          |
|-----|----|---------|----|-----|----------|------------|----------|
| 1.  | d. | 1       | a. | 1.  | <u> </u> | 1          | b.       |
|     |    |         |    |     |          |            |          |
|     |    |         |    | 2   | 2        | 2          | 0        |
| 2   | C  | 2       | C  | ۷.  | C.       | Z          | <u> </u> |
| ۷.  |    | <i></i> | с. | -   |          |            |          |
|     |    |         |    |     |          |            |          |
| 3.  | a. |         |    | 3.  | b.       |            |          |
|     |    | 3       | b. | -   |          | 0          |          |
| 4   | h  |         |    |     |          | 3          | a.       |
| 4.  | D. |         |    |     |          |            |          |
|     |    |         |    | 4.  | a.       |            |          |
| 5.  | с. |         |    |     |          | 4.         | b.       |
|     |    | 4       | a. | _   |          |            |          |
| 6   | J  |         |    |     |          |            |          |
| 0.  | u. |         |    | 5   | d        |            |          |
|     |    | 5.      | a. | 0.  |          |            |          |
|     |    |         |    | -   |          | 5.         | d.       |
| 7.  | а. |         |    |     | _        |            |          |
|     |    |         |    | 6.  | b.       |            |          |
|     |    | 6       | d  |     |          | 6          | C        |
|     |    | 0       | u. | -   |          | 0          | ι.       |
| 8.  | d. |         |    |     |          |            |          |
|     |    |         |    | 7.  | с.       |            |          |
|     |    |         |    |     |          | 7          | d.       |
| 0   | C  |         |    |     |          |            |          |
| 9.  | C. |         |    |     |          | 8.         | b.       |
|     |    | 7.      | c. | 8.  | a.       |            | ~~~      |
|     |    |         |    | -   |          |            |          |
| 10. | b. |         |    |     |          |            |          |
|     |    |         |    |     |          | 0          | 2        |
|     |    | 8.      | b. |     |          | <i>.</i> _ | a.       |
|     |    |         |    | -   |          |            |          |
|     |    |         |    | 9.  | b.       |            |          |
|     |    | 2       |    |     |          | 10         | с.       |
|     |    | 9       | d. | -   |          |            |          |
|     |    |         |    |     |          |            |          |
|     |    |         |    | 10. | d.       |            |          |
|     |    |         |    |     |          |            |          |
|     |    | 10.     | d. |     |          |            |          |

| 905  |            | 906 |          | 906 |    | 907 |           |
|------|------------|-----|----------|-----|----|-----|-----------|
| 1.   | b.         | 1   | a.       | 8.  | d. | 1.  | с.        |
|      |            |     |          |     |    |     |           |
| 2    | 1-         |     |          |     |    |     |           |
| Z    | D.         |     |          |     |    |     |           |
|      |            |     |          |     |    |     |           |
|      |            |     |          |     |    | 2.  | с.        |
| 3.   | с.         | 2.  | d.       | 9.  | b. | -   |           |
|      |            |     |          |     |    |     |           |
|      |            |     |          |     |    |     |           |
| 4    | h          |     |          |     |    | 3   | d         |
| ч. – | υ.         |     |          |     |    | J   | <u>u.</u> |
|      |            |     |          |     |    |     |           |
|      |            | 3   | b.       | 10. | a. |     |           |
| 5    | с.         |     |          |     |    |     |           |
|      |            |     |          |     |    | Λ   | h         |
|      |            |     |          |     |    | 4   | <u> </u>  |
| 6.   | b.         |     |          |     |    |     |           |
| _    |            |     |          |     |    |     |           |
|      |            | 4   | d.       |     |    |     |           |
|      |            |     |          |     |    | 5   | а.        |
| 7    | а          |     |          |     |    |     |           |
| · -  | <i>u</i> . |     |          |     |    |     |           |
|      |            |     |          |     |    |     |           |
|      |            |     |          |     |    |     |           |
| 8    | d.         | 5   | a.       |     |    | 6   | d.        |
|      |            |     |          |     |    |     |           |
| 9.   | d.         |     |          |     |    |     |           |
| _    |            |     |          |     |    |     |           |
|      |            |     |          |     |    |     |           |
|      |            |     |          |     |    | 7   | а.        |
| 10   | d          | 6   | C        |     |    |     |           |
|      | <u>u</u> . | 0   | <u>.</u> |     |    |     |           |
|      |            |     |          |     |    |     |           |
|      |            |     |          |     |    | 8   | b.        |
|      |            |     |          |     |    |     |           |
|      |            | 7   | C        |     |    |     |           |
|      |            | /·  | ι.       |     |    |     |           |

| 907 |   | 908 |    | 908 |    | 909 |    |
|-----|---|-----|----|-----|----|-----|----|
| 9   | d | 1   | a. | 8   | a. | 1   | d  |
|     |   |     |    |     |    | 2   | С. |
|     |   |     |    |     |    |     |    |
| 10  |   | 2   | 1  |     |    |     |    |
| 10  | a | 2   | d  |     |    |     |    |
|     |   |     |    |     |    | 3   | b. |
|     |   |     |    |     |    |     |    |
|     |   |     |    |     |    |     |    |
|     |   | 3.  | c. | 9.  | d. |     |    |
|     |   |     |    |     |    |     |    |
|     |   |     |    |     |    | 4   | С. |
|     |   | 4   | с. | 10  | С. |     |    |
|     |   |     |    |     |    |     |    |
|     |   |     |    |     |    |     |    |
|     |   |     |    |     |    |     |    |
|     |   |     |    |     |    |     |    |
|     |   | 5   | a  |     |    | 5   | С. |
|     |   | ,   | 1  |     |    |     |    |
|     |   | 6   | b  |     |    |     |    |
|     |   |     |    |     |    | Ĺ   | h  |
|     |   | 7   | d. |     |    | 0   | υ. |

| 909 |    | 910          | 910           | 1001     |    |
|-----|----|--------------|---------------|----------|----|
| 7   | с. | 1. a.        | 9. <u>d</u> . | 1        | d. |
|     |    |              |               |          |    |
|     |    |              |               | 2.       | d. |
|     |    |              |               |          |    |
| 0   |    |              |               |          |    |
| 8   | a  | 2. b.        |               | 3.       | a. |
|     |    |              | -             | <u> </u> |    |
|     |    |              | 10            | 4        |    |
|     |    |              | 10. <u> </u>  | 4        | а. |
|     |    | 3. b.        |               |          |    |
| 9   | а. |              | _             | -        | 1  |
|     |    | 4. d.        |               | 5        | d. |
|     |    |              | -             |          |    |
|     |    |              |               |          |    |
| 10. | b. |              |               | 6.       | C. |
|     |    |              |               |          |    |
|     |    | 5. <u>a.</u> | -             |          |    |
|     |    |              |               | 7.       | b. |
|     |    |              |               |          |    |
|     |    | 6            |               | o        | h  |
|     |    | 0. <u> </u>  | -             | o        | D. |
|     |    |              |               |          |    |
|     |    |              |               |          |    |
|     |    |              |               |          |    |
|     |    |              |               |          |    |
|     |    |              |               | 9        | b. |
|     |    |              |               |          |    |
|     |    |              |               |          |    |
|     |    | 7            | -             |          |    |
|     |    |              |               | 10.      | c. |
|     |    |              |               |          |    |
|     |    |              |               |          |    |
|     |    |              |               |          |    |
|     |    | 8. a.        |               |          |    |

| 1002 |         | 1002 |    | 1003 |    | 1003          |
|------|---------|------|----|------|----|---------------|
| 1    | b       | 9    | a. | 1    | d. |               |
| 2    | a       |      |    | 2    | с. |               |
|      |         |      |    | 3    | С  | 10. <u>a.</u> |
| 3    | b. / a. |      |    | 4    | C  |               |
|      |         |      |    | 5    | d. |               |
| 4    | С.      | 10   | b  | 6    | a. |               |
|      |         |      |    | 7    | d  |               |
| 5    | b       |      |    | 8    | b  |               |
|      |         |      |    | 9    | d  |               |
| 6    | d       |      |    |      |    |               |
| 7    | С.      |      |    |      |    |               |

8. <u>c.</u>

| 1004 |    | 1004         | 1004 |          | 1005 |            |
|------|----|--------------|------|----------|------|------------|
| 1    | с. | 5. b.        | 7.   | a.       | 1    | b.         |
|      |    |              |      |          |      |            |
| 2    | d  |              |      |          | 2    | a          |
|      |    |              |      |          | 3    | <u>d</u> . |
| 3    | b  |              |      |          | 4    | <u>b.</u>  |
| 4    | C. | 6. <u>d.</u> |      | <u> </u> |      |            |
|      |    |              | 9.   | b.       | 5    | <u>b.</u>  |
|      |    |              | 10.  | d.       | 6.   | d.         |

| 1005 |    | 1006 |    | 1006 |    | 1007 |    |
|------|----|------|----|------|----|------|----|
| 7.   | d. | 1    | d. | 9.   | d. | 1    | с. |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    | C    | h  |      |    |      |    |
|      |    | Z    | D. |      |    |      |    |
| 0    |    |      |    | 10   |    |      |    |
| 8    | С. |      |    | 10.  | d. | _    |    |
|      |    | 3    | a. |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    |      |    |
| 0    | 2  |      |    |      |    | 2    | d. |
| 9    | d  |      |    |      |    |      |    |
|      |    | 4    | b. |      |    |      |    |
|      |    |      |    |      |    |      |    |
| 10.  | d. |      |    |      |    |      |    |
|      |    | 5.   | C. |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    | 3    | h  |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    | 6    | J  |      |    |      |    |
|      |    | 0    | u  |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    | 7.   | d. |      |    | 4.   | C. |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    |      |    |      |    |      |    |
|      |    | 8    | с. |      |    | 5    | d. |

| 1007 |          | 1008         | 1008         | 1009         |
|------|----------|--------------|--------------|--------------|
| 6    | d.       | 1. a.        | 8. b.        | 1d.          |
|      |          |              | 9. <u>a.</u> |              |
| 7    | <u> </u> | 2. <u>b.</u> | 10a.         | 2. <u>a.</u> |
| 8    | a        | 3. <u>c.</u> |              | 3. <u>c.</u> |
| 0    |          | 4. <u>b.</u> |              | 4. <u>b.</u> |
| 9    | a        | 5. <u>d.</u> |              | 5. <u>a.</u> |
|      |          | 6. <u> </u>  |              | 6. <u>d.</u> |
|      |          |              |              | 7. <u> </u>  |
| 10.  | d.       | 7. <u> </u>  |              | 8. c.        |

| 1009 |    | 1009 |    | 1010 |    | 1101 |          |
|------|----|------|----|------|----|------|----------|
| 9.   | с. | 10.  | b. | 1    | d. | 1    | c.       |
|      |    |      |    |      |    | 2.   | a.       |
|      |    |      |    | 2    | b  |      |          |
|      |    |      |    | 3    | a  | 2    |          |
|      |    |      |    | 4    | a  | 3    | <u> </u> |
|      |    |      |    | 5    | d  | 4    | d        |
|      |    |      |    | 6    | С. | 5    | a        |
|      |    |      |    |      |    | 6.   | b.       |
|      |    |      |    | 7    | b  | 7    | a.       |
|      |    |      |    | 8    | a  | 8    | b        |
|      |    |      |    | Q    | h  | 9    | b.       |
|      |    |      |    | 7    | υ  |      |          |
|      |    |      |    | 10   | b  | 10   | с.       |

| 1102 |    | 1103          | 1103          | 1104 |    |
|------|----|---------------|---------------|------|----|
| 1.   | d. | 1. <u> </u>   | 8. <u>d</u> . | 1    | d. |
| 2    | d  |               |               | 2    | с. |
| 3    | a  | 2. a.         |               | 3.   | a. |
| 4    | С. |               |               |      |    |
| _    |    |               | 9. <u>d</u> . | 4    | b. |
| 5    | С. |               |               | 5    | a. |
|      |    | 3. <u>b.</u>  |               |      |    |
| 6    | d  |               |               | 6    | b  |
|      |    |               |               |      |    |
|      |    |               | 10a           | 7    | с. |
|      |    | 4. <u>c.</u>  |               |      |    |
| 7    | a  |               |               | 8    | b. |
|      |    | 5. <u>d</u> . |               |      |    |
|      |    |               |               |      |    |
| 8.   | b. |               |               | 9.   | b. |
| -    |    | 6. <u> </u>   |               |      |    |
|      |    |               |               |      |    |
|      |    |               |               | 10   | d. |
| 9    | b  | 7. <u> </u>   |               |      |    |
|      |    |               |               |      |    |

10. <u>d.</u>

| 1105 |          | 1105    |    | 1106 |    | 1107 |    |
|------|----------|---------|----|------|----|------|----|
| 1.   | а.       | 8       | a. | 1    | а. | 1    | d  |
|      |          |         |    | 2    | 1  | 2    | c. |
|      |          | 9       | C. | 2    | b  |      |    |
| 2.   | d.       | <i></i> |    | -    |    | 3    | a. |
|      |          |         |    | 3.   | C. |      |    |
|      |          |         |    |      |    |      |    |
|      |          |         |    |      |    |      |    |
| 3.   | b.       | 10      | d. | -    |    |      |    |
|      |          |         |    |      |    |      |    |
|      |          |         |    | 4    | d. |      |    |
|      |          |         |    |      |    |      |    |
|      |          |         |    | -    |    |      |    |
| 4.   | a.       |         |    | 5    | a  |      |    |
| -    |          |         |    |      |    |      |    |
|      |          |         |    | 6.   | с. |      |    |
|      |          |         |    | _    |    | 4    | b. |
|      |          |         |    |      |    |      |    |
|      |          |         |    | 7    | d  |      |    |
| 5.   | С.       |         |    |      |    | 5    | a. |
|      |          |         |    |      |    |      |    |
|      |          |         |    |      |    |      |    |
|      |          |         |    | 8.   | a. |      |    |
|      |          |         |    | _    |    |      |    |
|      |          |         |    |      |    |      |    |
| 6    | h        |         |    |      |    | 6    | с. |
| 0    | <u> </u> |         |    |      |    |      |    |
|      |          |         |    | 9    | С. |      |    |
|      |          |         |    |      |    |      |    |
| 7.   | C.       |         |    |      |    |      |    |
| -    |          |         |    | 10.  | d. |      |    |
|      |          |         |    |      |    | 7    | b. |

| 1107 |    | 1108 |    | 1108 |          | 1109          |            |
|------|----|------|----|------|----------|---------------|------------|
| 8    | d. | 1    | d. | 7    | d        | 1             | a.         |
|      |    |      |    |      |          |               |            |
|      |    |      |    |      |          |               |            |
|      |    |      |    | 8    | C        | 2             | d          |
|      |    |      |    | 0    | <u> </u> | <i>∠</i>      | u.         |
| 0    | 1  | 2    |    | 9    | b        |               |            |
| 9    | D. | Z    | С. |      |          |               |            |
|      |    |      |    |      |          |               | _          |
|      |    |      |    |      |          | 3             | d.         |
|      |    |      |    | 10   | a.       |               |            |
|      |    | 3    | а. |      |          | 1             |            |
|      |    |      |    |      |          | <sup>4.</sup> | C.         |
| 10   |    | 4    |    |      |          |               |            |
| 10   | a  | 4    | a  |      |          | 5.            | C.         |
|      |    |      |    |      |          |               |            |
|      |    |      |    |      |          |               |            |
|      |    |      |    |      |          | 6.            | b.         |
|      |    |      |    |      |          |               |            |
|      |    |      |    |      |          | 7.            | C.         |
|      |    |      |    |      |          | _             |            |
|      |    |      |    |      |          |               |            |
|      |    |      |    |      |          | 8             | a.         |
|      |    |      |    |      |          |               |            |
|      |    |      |    |      |          |               |            |
|      |    |      |    |      |          | 0             | L          |
|      |    |      |    |      |          | 9             | <u>u</u> . |
|      |    |      |    |      |          |               |            |
|      |    |      |    |      |          |               |            |
|      |    |      |    |      |          | 10            | b.         |
|      |    |      |    |      |          |               |            |
|      |    | 5.   | b. |      |          |               |            |
|      |    |      |    |      |          |               |            |

6. <u>c.</u>

| 1110 |           | 1201           | 1202         | 1202         |
|------|-----------|----------------|--------------|--------------|
| 1    | b.        | 1. <u>c.</u>   | 1. <u> </u>  | 5. <u>c.</u> |
|      |           |                |              |              |
|      |           |                |              |              |
|      |           |                |              |              |
| 2    | с.        |                |              |              |
|      |           | 2 b            |              |              |
| 3.   | a.        | 2              |              |              |
|      |           | _              |              |              |
|      |           | 3. <u>c.</u>   |              |              |
|      |           |                |              |              |
| 4    | d.        | 4. <u>d.</u>   | 2. <u>b.</u> |              |
|      |           |                |              |              |
|      |           | 5. d.          |              |              |
| 5    | a.        |                |              |              |
|      |           | 6. <u>b.</u>   |              |              |
|      |           |                |              |              |
|      |           |                |              |              |
| 6    | d         |                | 2 2          |              |
|      |           |                | J. <u>d.</u> | 6. c.        |
|      |           |                |              |              |
| 7    | a         | 7 1            |              |              |
|      |           | 7. <u>u.</u>   |              |              |
|      |           | 8. <u>b.</u>   |              |              |
|      |           |                |              |              |
|      |           |                |              |              |
| 8    | b.        |                |              |              |
| 0    | d         |                |              |              |
| 9    | <u>u.</u> |                | 4. d.        |              |
|      |           |                |              |              |
|      |           | 9. <u>d.</u>   |              |              |
| 10.  | b.        |                |              | 7. a.        |
|      |           |                |              |              |
|      |           | 10. <u>d</u> . |              |              |

| 1202<br>8. <u>a.</u> | 1203                                          | <b>1204</b><br>1. <u>d.</u> | <b>1204</b><br>4. <u>b.</u> |
|----------------------|-----------------------------------------------|-----------------------------|-----------------------------|
|                      | 1a. <u>a.</u><br>b. <u>b.</u><br>c. <u>d.</u> | 2. <u>d.</u>                |                             |
| 9. <u>b.</u>         | 2. <u>c.</u>                                  |                             |                             |
|                      | 3. <u> </u>                                   | 3. <u>a.</u>                |                             |
|                      | 4. <u>a.</u>                                  |                             |                             |
| 10. <u>d.</u>        | 5. <u>a.</u>                                  |                             |                             |
|                      | 6. <u>a.</u>                                  |                             |                             |
|                      | 7. <u> </u>                                   |                             |                             |
|                      | 8. <u>a.</u>                                  |                             |                             |
|                      | 9. <u>d.</u>                                  |                             |                             |
|                      |                                               |                             |                             |

10. <u>c.</u>

| <b>1204</b><br>5. | b. | <b>1204</b><br>7. | d. | <b>1204</b><br>9. | c. | <b>1205</b><br>1. | c. |
|-------------------|----|-------------------|----|-------------------|----|-------------------|----|
| 6                 | d. | 8.                | C. |                   |    |                   |    |
|                   |    |                   |    | 10                | a  | 2                 | a  |

3. <u>d.</u>

4. <u>c.</u>

5. <u>b.</u>

6. <u>d.</u>

7. \_\_\_\_\_a.

| 1205         | 1206 |    | 1206         | 1207 |    |
|--------------|------|----|--------------|------|----|
|              | 1    | b. | 9. <u>a.</u> | 1.   | a. |
| 8. <u> </u>  |      |    |              |      |    |
|              | 2    | a  | 10. <u> </u> | 2.   | a. |
|              |      |    |              |      |    |
| 9. <u>d.</u> |      |    |              |      |    |
|              |      |    |              | 3.   | d. |
|              | 3    | b  |              | -    |    |
| 10. b.       |      |    |              |      |    |
|              | 4    | b. |              |      |    |

5. <u>b.</u>

6. <u>c.</u>

7. <u>b.</u>

8. <u>c.</u>
| 1207 |    | 1207 |    | 1207         | 1208 |    |
|------|----|------|----|--------------|------|----|
| 4    | d. | 6    | b. | 10. <u> </u> | 1.   | С. |
|      |    |      |    |              | 2.   | b. |
|      |    |      |    |              | 3    | d. |
|      |    | 7    | b  |              |      |    |
|      |    |      |    |              |      |    |
|      |    | 8    | d. |              | 4    | d. |
|      |    |      |    |              |      |    |
|      |    |      |    |              |      |    |
|      |    | 9    | d. |              |      |    |

5. <u>c.</u>

6. <u>a.</u>

7. <u>a.</u>

5. <u>a.</u>

| 1208 |    | 1209 |    | 1210 |          |
|------|----|------|----|------|----------|
| 8.   | с. | 1.   | с. | 1    | b.       |
|      |    |      |    |      |          |
|      |    |      |    |      |          |
|      |    |      |    | 2    | C        |
|      |    | 2.   | d. |      |          |
|      |    |      |    | -    |          |
|      |    |      |    |      |          |
|      |    | З    | h  |      |          |
|      |    | 0.   | υ. | -    |          |
|      |    |      |    | 3    | a.       |
|      |    | 4.   | d. |      |          |
|      |    |      |    | 4    | 4        |
|      |    |      |    | 4    | <u> </u> |
|      |    |      |    |      |          |
|      |    |      |    |      |          |
|      |    |      |    | 5    | b.       |
|      |    | 5    | э  |      |          |
|      |    | 0.   | a. |      |          |
| 9.   | с. |      |    |      |          |
|      |    |      |    |      |          |
|      |    |      |    | 6    | b.       |
|      |    |      |    |      |          |
|      |    | 6.   | b. |      |          |
| 10   | d. |      |    | -    |          |
|      |    |      |    | 7    |          |
|      |    |      |    | /    | d.       |
|      |    | 7.   | d. |      |          |
|      |    |      |    | -    |          |
|      |    | 8.   | d. | . 8  | b.       |
|      |    |      |    |      |          |
|      |    | 9.   | a. |      |          |
|      |    |      |    | 9    | a.       |
|      |    | 10   |    |      |          |
|      |    | 10.  | С. |      |          |
|      |    |      |    |      |          |
|      |    |      |    | 10.  | d        |

| Student Name   |     |     |     |      |      | Age                  |
|----------------|-----|-----|-----|------|------|----------------------|
| Date           |     |     |     |      |      | Grade Last Completed |
|                | 700 | 800 | 900 | 1000 | 1100 | 1200                 |
|                |     |     |     |      |      |                      |
|                |     |     |     |      |      |                      |
|                |     |     |     |      |      |                      |
|                |     |     |     |      |      |                      |
|                |     |     |     |      |      |                      |
|                |     |     |     |      |      |                      |
|                |     |     |     |      |      |                      |
|                |     |     |     |      |      |                      |
|                |     |     |     |      |      |                      |
| TOTAL<br>SCORE |     |     |     |      |      |                      |

GRADE LEVEL PLACEMENT: A student can be placed academically using the rule that he/she has successfully passed the test for any given level if he/she achieves a **Total Score of 70 points or more**.

This student places at grade level \_\_\_\_\_.

LEARNING GAPS: Learning gaps can be easily identified with the placement test. If a student receives **points of 6 or less** on any individual test, he/she has not shown mastery of the skills in that particular LIFEPAC. If desired, these LIFEPACs may be ordered and completed before the student begins his assigned grade level curriculum.

Learning gap LIFEPACs for this student are \_\_\_\_\_ \_\_\_\_ \_\_\_\_

It is not unusual for a student to place at more than one level in various subjects when beginning the LIFEPAC curriculum. For example, a student may be placed at 9th level in Bible, mathematics, science and social studies but 8th level in language arts. The majority of school time should be concentrated on the areas of lower achievement with the ultimate goal of equal skill mastery in all subjects at the same grade level.