\qquad
Use Color Tiles to build each array.
Write the multiplication sentence for each array.
1.

2.

\qquad rows of \qquad tiles
\qquad
\qquad rows of \qquad tiles
3.

\qquad
\qquad rows of \qquad tiles

Build each array using Color Tiles. Then sketch the model below. Write each multiplication sentence.

4. 2 rows of 9 tiles
5. 7 rows of 4 tiles
6. 5 rows of 6 tiles

Find the answer to each multiplication problem.
7. $8 \times 5=$ \qquad
8. $2 \times 7=$ \qquad
9. $4 \times 4=$ \qquad
10. $6 \times 3=$ \qquad
11. $3 \times 5=$ \qquad
12. $7 \times 6=$ \qquad

Name \qquad

Challenge! Which two problems from the previous page can be used to demonstrate the Commutative Property of Multiplication? Model the arrays that show both multiplication expressions.
\qquad
\qquad
\qquad
\qquad
Use Two-Color Counters to build the multiples of 5 shown. Write the multiplication fact for each multiple of 5 modeled by the darker counters.
1.

\qquad \times \qquad
\qquad
\qquad \times \qquad = \qquad
\qquad \times \qquad $=$ \qquad
\qquad \times \qquad $=$ \qquad

Build each multiplication fact using Two-Color Counters. Then sketch the model and use a Hundred Chart to find the next two multiples of 5 .
2. $4 \times 5=20$
\qquad \times \qquad $=$ \qquad
\qquad \times \qquad $=$ \qquad
3. $8 \times 5=40$
\qquad
\qquad \times \qquad $=$ \qquad

Write the next four multiples of 5.
4. $2 \times 5=10$
5. $5 \times 5=25$
6. $7 \times 5=35$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \times \qquad $=$ \qquad
\qquad
\qquad
\qquad
\qquad \times \qquad
\qquad \times \qquad $=$ \qquad
\qquad
\qquad
\qquad
\qquad \times \qquad $=$ \qquad

Name \qquad

Challenge! When you use Two-Color Counters and a Hundred Chart to find all the multiples of 5 less than or equal to 100, how many numbers do you color? Describe the pattern of the colored numbers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Use Two-Color Counters to build each array. Rearrange the counters into groups of the size shown. Complete each division sentence.
1.

2.

put into groups of

\qquad \div \qquad $=$ \qquad

\qquad
\qquad

Build each array using Two-Color Counters. Group the counters

 to be able to complete each division sentence.3. 45 into 9 groups
4. 32 into 4 groups
5. 30 into 6 groups
$45 \div$ \qquad
\qquad $32 \div$ \qquad $30 \div$ \qquad
\qquad

Write each division sentence. Write a related multiplication sentence.
6. 15 into 3 groups
$15 \div$ \qquad $=$ \qquad
\qquad \times \qquad $=15$
9. 35 into 5 groups $35 \div$ \qquad $=$ \qquad
\qquad \times \qquad $=35$
7. 28 into 7 groups
$28 \div$ \qquad = \qquad
\qquad \times \qquad $=28$
10. 48 into 8 groups
$48 \div$ \qquad $=$

$$
\ldots \times \ldots=48
$$

8. 20 into 2 groups
$20 \div$ \qquad $=$ \qquad
\qquad \times \qquad $=20$
9. 81 into 9 groups $81 \div$ \qquad
\qquad

Name \qquad

Challenge! Problem 2 shows three rows of 8 Two-Color Counters for a total of 24 counters. Write a fact family for the model shown. Write a fact family for the model you create from the 24 counters. Explain how the number 24 can have two different fact families.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Use Centimeter Cubes to match the set shown. Divide the set into equal groups of the given size. Write a number sentence to show the quotient.

Divide into groups of 9 .
2.

Divide into groups of 8 .

Using Centimeter Cubes, model the division problem. Sketch the model. Write a number sentence for the model.
3. 39 cubes into 13 groups

Write a number sentence for each quotient.
4. 81 cubes into 9 groups
\qquad
6. 70 cubes into 14 groups
\qquad
8. 96 cubes into 8 groups
5. 77 cubes into 11 groups
\qquad
7. 63 cubes into 7 groups
\qquad
9. 75 cubes into 15 groups

Name

Challenge! For Problems 7-9, write a different division sentence using the same numbers and the same quotient. Choose one and draw a picture to support your sentence.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Use Centimeter Cubes and index cards to model the division problem. Divide the cubes equally among the index cards.
Write the quotient.
1.

\square

\square

\square

$76 \div 19=$ \qquad

Using Centimeter Cubes and index cards, model each division. Sketch the cubes on the cards shown below. Write the division sentence.
2. 51 cubes

$51 \div 17=$ \qquad

Find each quotient.
4. $75 \div 15=$ \qquad
5. $72 \div 12=$ \qquad
6. $80 \div 16=$
7. $105 \div 15=$ \qquad
8. $162 \div 18=$ \qquad
9. $91 \div 13=$ \qquad

Name \qquad

Challenge! When you use Centimeters Cubes and index cards to model division, do the cubes or the index cards represent the dividend? What represents the quotient? Explain your answers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Use Color Tiles to model each array. Complete the multiplication sentence. Write a related division sentence.
1.

$3 \times$ \qquad $=24$
\qquad
$6 \times$ \qquad $=30$
\qquad

Using Color Tiles, model an array for each number sentence. Sketch the model. Complete the multiplication sentence. Write a related divison sentence.
3. $8 \times$ \qquad $=48$
4. $5 \times$ \qquad $=20$

Complete each multiplication sentence. Write a related division sentence.
5. $7 \times$ \qquad $=42$
6. $4 \times$ \qquad $=36$
\qquad
\qquad
7. $8 \times$ \qquad $=40$
8. $7 \times$ \qquad $=56$

Name

Challenge! Write another division sentence for Problem 1. Describe the model for this division sentence. Write the other two sentences in this fact family.
\qquad
\qquad
\qquad
\qquad
Use Two-Color Counters to build each model. Write number sentences that show the Commutative Property of Multiplication.
1.

Using Two-Color Counters, model the Commutative Property of Multiplication for each pair of factors. Sketch the models. Write both number sentences.
2. 4,8
3. 3,7
\qquad
\qquad

Write two number sentences using each pair of factors that show the Commutative Property of Multiplication.
4. 2,8
5. 5,9
6. 6,7
\qquad
\qquad
\qquad
7. 3,1
8. 8,3
9. 6,9
\qquad
\qquad
\qquad

Name \qquad
Challenge! Problems 1 and 8 both have products of 24 . Use 24 Two-Color Counters to find another pair of factors for 24. Describe your model. Write two multiplication sentences for your model that show the Commutative Property of Multiplication.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Use Two-Color Counters to build each model. Write two number sentences that show the Associative Property of Multiplication.
1.

Using Two-Color Counters, model the Associative Property of Multiplication for each set of factors. Sketch the models. Write number sentences for both models.
2. $3,5,6$

Write two number sentences for each set of factors that show the Associative Property of Multiplication.
3. $2,3,5$
4. $2,4,5$
5. $3,6,8$
\qquad
\qquad
\qquad
\qquad
\qquad

Name \qquad

Challenge! In Problem 4, one way that you can associate the numbers makes the problem simpler because you get a multiple of 10 multiplied by a single-digit number. In what other problem on the previous page can you use the Associative Property to get a multiple of 10 times a single-digit number? Write the number sentence showing the association.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Use Color Tiles to model each array. Write the multiplication expression for each array. Then write the Distributive Property sentence modeled by the arrays.

2.

\qquad

Using Color Tiles, model arrays to show the Distributive Property. Sketch the models. Write the sentence modeled.
3. $(3 \times 3)+(3 \times 4)$
4. $(5 \times 2)+(5 \times 7)$

Write a number sentence for the total using the Distributive Property. Then find the total.
5. $(2 \times 4)+(2 \times 6)$
6. $(3 \times 8)+(3 \times 1)$
7. $(4 \times 3)+(4 \times 7)$
8. $(6 \times 2)+(6 \times 3)$

Name \qquad

Challenge! Problems 1 and 6 both simplify to 27. Explain how this can be correct even though the problems have different numbers being multiplied. Draw pictures to help.
\qquad
\qquad
\qquad

