Objective

Identify equivalent fractions using models.

Common Core State Standards

- 3.NF.3a Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
- 3.NF.3b Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent, e.g., by using a visual fraction model.
A. $\frac{2}{8}$
B. $\frac{1}{2}$
C. $\frac{4}{4}$
D. $\frac{8}{4}$

Try It !

25 minutes | Groups of 4
Here is a problem about equivalent fractions.

It is Darnell's birthday, so his mother brought a birthday cake to his afterschool class for him to share with his friends. The cake was cut into 6 equal slices. If Darnell and his friends ate 3 of the 6 slices, what fraction of the cake was left over?

Introduce the problem. Then have students do the activity to solve the problem. Distribute Deluxe Rainbow Fraction Circles to students.

1. Have students assemble all of the circles in the set and explore how each circle is divided into different numbers and sizes of pieces.
Say: Find the fraction pieces that make a circle out of 6 equal parts. Make sure students use sixths to make a circle. Explain that the 6 pieces match the 6 equal pieces of the cake in the problem, and that combined, the 6 equal pieces make up 1 whole.

2. Have students create other equivalent fractions using circles. Say: A pie is divided into 3 slices. One slice is removed. Ask: What fraction of the pie is left? Then have students build models to show $\frac{2}{3}$ and then $\frac{4}{6}$.

Materials

- Deluxe Rainbow Fraction ${ }^{\circledR}$ Circles (1 set per group)

2. Say: Let's take away the 3 pieces eaten by the kids. Ask: What is the fraction of the circle that is left? Can we use any other fractional parts to cover the $\frac{3}{6}$ that is left to make another fraction that means the same thing? Students should find the equivalent fractions $\frac{1}{2}, \frac{2}{4}$, and $\frac{4}{8}$.

A Look Out!

Stress that when finding equivalent fractions, students need to use the same size of the fractional parts. Watch for students who try to put together $\frac{1}{3}$ and $\frac{1}{6}$ to show $\frac{1}{2}$. Although these two fractions added together equal $\frac{1}{2}$, they are not creating an equivalent fraction for $\frac{1}{2}$. Stress the one-to-one correspondence of equivalent fractions: $\frac{1}{2}=\frac{3}{6}$. Although $\frac{1}{3}+\frac{1}{6}=\frac{1}{2}$ is true, it is an addition sentence, not a set of equivalent fractions.

Use Fraction Circles to model each fraction. Write equivalent fractions for the shaded parts. Write equivalent fractions for the unshaded parts.

(Check students' work.)

1.

2.

\qquad $=\quad \frac{2}{8}$

Using Fraction Circles, model the fraction. Then sketch a model or an equivalent fraction. Write the equivalent fraction.
3. $\frac{1}{2}=\frac{2}{4}$
(Check students' models.)

Write an equivalent fraction for each fraction.
4. $\frac{2}{3}=\frac{4}{6}$
5. $\frac{3}{4}=\frac{6}{8}$
6. $\frac{2}{8}=\frac{1}{4}$
7. $\frac{2}{4}=\frac{1}{2}$
8. $\frac{2}{6}=\frac{4}{12}$
9. $\frac{6}{8}=\frac{9}{12}$

Answer Key

Challenge! Name another fraction equivalent to the fractions in Problem 9. Explain how you know that it is equivalent.

Challenge: (Sample) $\frac{3}{4}$ is equivalent to both the fractions in Problem 9. Three fourths parts are the same size as six eighths parts and nine twelfths parts.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Use Fraction Circles to model each fraction. Write equivalent fractions for the shaded parts. Write equivalent fractions for the unshaded parts.
1.

\qquad
\qquad
\qquad
2.

\qquad
\qquad
\qquad $=$ \qquad

Using Fraction Circles, model the fraction. Then sketch a model or an equivalent fraction. Write the equivalent fraction.
3. $\frac{1}{2}=\frac{}{4}$

Write an equivalent fraction for each fraction.
4. $\frac{2}{3}=\frac{}{6}$
5. $\frac{3}{4}=\frac{}{8}$
6. $\frac{2}{8}=\frac{}{4}$
7. $\frac{2}{4}=\frac{}{2}$
8. $\frac{2}{6}=\frac{}{12}$
9. $\frac{6}{8}=\frac{}{12}$

Name

Challenge! Name another fraction equivalent to the fractions in Problem 9. Explain how you know that it is equivalent.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

