\qquad

Use Color Tiles to estimate the square root of the given number. Fill in the blanks. Write a sentence about the estimate of the square root.

1. $\sqrt{28}$

28 is between the square numbers of
\qquad and \qquad .
$\sqrt{28}$ is between \qquad and \qquad .

It is closer to \qquad .

Using Color Tiles, model square numbers to help you estimate the given square root. Sketch the model. Write the estimate and justify it.
2. $\sqrt{76}$

76 is between the square numbers of
\qquad and \qquad .
$\sqrt{76}$ is between \qquad and \qquad .

It is closer to \qquad .

Estimate each square root. Write the two numbers the square root is between and circle the number it is closer to.
3. $\sqrt{15}$
4. $\sqrt{45}$
5. $\sqrt{33}$
6. $\sqrt{65}$
7. $\sqrt{20}$
8. $\sqrt{50}$

Name

Challenge! Explain how you decide which two numbers the value of a square root is between.
\qquad

Use the Folding Number Line to estimate the square root. Fill in the blanks.

1. $\sqrt{15}$

3.8	$\stackrel{\sim}{0}$	$\begin{aligned} & \text { No } \\ & \end{aligned}$	¢	بٌ	$\begin{array}{\|c} \hline \\ 0 \\ 0 \\ 0 \end{array}$	心o	0	$\underset{\infty}{\infty}$	ou		3.9

$\sqrt{15}$ is between the whole numbers \qquad and \qquad .

A better estimate is between \qquad and \qquad .

A better estimate is between \qquad and \qquad .

A better estimate is between \qquad and \qquad .

Using the Folding Number Line, estimate the square root. Fill in the blanks.
2. $\sqrt{38}$
$\sqrt{38}$ is between the whole numbers \qquad and \qquad .

A better estimate is between \qquad and \qquad .

A better estimate is between \qquad and \qquad .

A better estimate is between \qquad and \qquad .

Give the tenths interval on which the irrational number falls.
3. $\sqrt{75}$ \qquad 4. $\sqrt{56}$ \qquad
5. $\sqrt{117}$ \qquad 6. $\sqrt{48}$ \qquad

Name

Challenge! Using the Folding Number Line, show $\sqrt{17}$ and explain why increasing the number of decimal places in the endpoints of a range makes the estimate of an irrational square root more accurate.
\qquad

