Name \qquad
1
Draw a line to cut the shapes exactly in half.
a.

b.

c.

d.

\qquad

Try This

- For problem 1, model the fractions using Fraction Circles.
- Shade parts on the circles to show the fractions.
- Compare the fractions. Write $<$ or $>$ in the \bigcirc.
- For problem 2, model and sketch the fractions. Write < or >.
- For problems 3-5, compare the fractions. Write $<$ or $>$.

1. Model $\frac{5}{8}$ and $\frac{7}{8}$.

2. Model $\frac{4}{6}$ and $\frac{2}{6}$.

3. $\frac{2}{4} \bigcirc \frac{3}{4}$
4. $\frac{3}{6} \bigcirc \frac{4}{6}$
5. $\frac{2}{3} \bigcirc \frac{1}{3}$
\qquad
Use Fraction Circles to build the models.
Compare the fractions. Write < or > in the \square
6. $\frac{2}{4}$ and $\frac{3}{4}$
7. $\frac{6}{8}$ and $\frac{2}{8}$

Use Fraction Circles to model the given fractions.
Draw the models by shading parts of the circles.
Compare the fractions and write < or > in the

3. $\frac{4}{8}$ and $\frac{1}{8}$

4. $\frac{2}{6}$ and $\frac{5}{6}$

Compare the fractions and write $<$ or $>$ in the \bigcirc.
5. $\frac{2}{3} \bigcirc \frac{1}{3}$
6. $\frac{5}{6} \bigcirc \frac{3}{6}$
7. $\frac{3}{8} \bigcirc \frac{2}{8}$
8. $\frac{2}{4} \bigcirc \frac{3}{4}$
9. $\frac{1}{6} \bigcirc \frac{4}{6}$
10. $\frac{5}{8} \bigcirc \frac{8}{8}$

Name \qquad
2
Shade one-third of the rectangle.
a. How much is not shaded?
b. Shade more of the rectangle so $\frac{1}{3}$ is not shaded.
c. How much is shaded now?
\qquad

Try This

- For problem 1, model the fractions using Fraction Circles.
- Shade parts on the circles to show the fractions.
- Compare the fractions. Write $<$ or $>$ in the \bigcirc.
- For problem 2, model and sketch the fractions. Write < or $>$.
- For problems 3-5, compare the fractions. Write < or >.

1. Model $\frac{2}{8}$ and $\frac{2}{3}$.

2. Model $\frac{3}{4}$ and $\frac{3}{6}$.

3. $\frac{2}{3} \bigcirc \frac{2}{4}$
4. $\frac{3}{6} \bigcirc \frac{3}{8}$
5. $\frac{5}{8} \bigcirc \frac{5}{6}$
\qquad
Use Fraction Circles to build the models.
Compare the fractions. Write < or > in the \square
6. $\frac{2}{6}$ and $\frac{2}{4}$
7. $\frac{5}{8}$ and $\frac{5}{6}$

Use Fraction Circles to model the given fractions.
Draw the models by shading parts of the circles.
Compare the fractions and write < or > in the

3. $\frac{2}{6}$ and $\frac{2}{3}$

4. $\frac{3}{4}$ and $\frac{3}{8}$

Compare the fractions and write < or > in the \bigcirc.
5. $\frac{1}{2} \bigcirc \frac{1}{4}$
6. $\frac{4}{6} \bigcirc \frac{4}{4}$
7. $\frac{2}{8} \bigcirc \frac{2}{4}$
8. $\frac{3}{4} \bigcirc \frac{3}{6}$
9. $\frac{3}{6} \bigcirc \frac{3}{8}$
10. $\frac{1}{3} \bigcirc \frac{1}{6}$

Name \qquad
3
What fraction is the shaded part?
a. more than $\frac{1}{4}$
b. exactly $\frac{1}{4}$
c. less than $\frac{1}{4}$
d. Need more information.

\qquad

Try This

- For problem 1, use Fraction Circle pieces to find as many fractions as you can between 0 and $\frac{1}{2}$.
- For problem 2, use Fraction Circle pieces to find as many fractions as you can between $\frac{1}{2}$ and 1 .
- Write all fractions in simplest form.
- Do not include fractions equal to $\frac{1}{2}$ or 1 .

$\frac{2}{8}$ is less than $\frac{1}{2}$.
Think: $\frac{2}{8}=\frac{1}{4}$
So, $\frac{1}{4}$ is less than $\frac{1}{2}$.

\qquad
\qquad
\qquad
\qquad
Use Fraction Circles to build the models. Compare the fractions to $\frac{1}{2}$. Write the symbol < or >.

1. $\frac{1}{4}$

$\frac{1}{4} \bigcirc \frac{1}{2}$
2. $\frac{3}{4}$

$\frac{3}{4} \bigcirc \frac{1}{2}$
3. $\frac{1}{3}$

$\frac{1}{3} \bigcirc \frac{1}{2}$

Use Fraction Circles to model the fractions. Sketch the models by shading parts on the circles. Compare the fractions to $\frac{1}{2}$. Write the symbol < or $>$.
4. $\frac{5}{6}$

$\frac{5}{6} \bigcirc \frac{1}{2}$
5. $\frac{2}{3}$

$\frac{2}{3} \bigcirc \frac{1}{2}$
6. $\frac{5}{8}$

$\frac{5}{8} \bigcirc \frac{1}{2}$

Use Fraction Circles to compare the fractions to $\frac{1}{2}$. Write the symbol < or >.
7. $\frac{3}{8} \bigcirc \frac{1}{2}$
8. $\frac{2}{6} \bigcirc \frac{1}{2}$
9. $\frac{4}{6} \bigcirc \frac{1}{2}$

