If you've mastered arithmetic, fractions, and the basic algebraic concepts illustrated in the problems below, you are ready for the Art of Problem Solving's Introduction to Counting \& Probability book.

1. Solving linear equations. Sample questions:
(a) Find x : $31 x+24=365$.
(b) Find n : $7 n-4=2 n+16$.
2. Simplifying fractions containing algebraic expressions. Reduce the following fractions:
(a) $\frac{3 x+6}{3}$.
(b) $\frac{n(n-1)}{n(n+1)(r-1)}$.
3. Addition and subtraction of quotients with different algebraic denominators. Write each of the following as a single fraction in simplest terms:
(a) $\frac{1}{m n}+\frac{1}{m(2 n-2)}$.
(b) $\frac{r}{r-1}-\frac{r-1}{r}$.
4. Multiplication of polynomials and binomials. Expand each of the following:
(a) $(x+2)(x+3)$.
(b) $(x+y)\left(x^{2}+2 x y+y^{2}\right)$.
(c) $(x-1)^{4}$. (Hint: $(x-1)^{4}=(x-1)(x-1)^{3}$.)

The answers to Are You Ready for Introduction to Counting \& Probability are below.

1. (a) $x=11$
(b) $n=4$.
2. (a) $x+2$.
(b) $\frac{n-1}{(n+1)(r-1)}$ or $\frac{n-1}{n r+r-n-1}$.
3. (a) $\frac{3 n-2}{m n(2 n-2)}$ or $\frac{3 n-2}{2 m n^{2}-2 m n}$.
(b) $\frac{2 r-1}{r(r-1)}$ or $\frac{2 r-1}{r^{2}-r}$
4. (a) $x^{2}+5 x+6$.
(b) $x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$.
(c) $x^{4}-4 x^{3}+6 x^{2}-4 x+1$.
