

Are You Ready?

Introduction to Counting & Probability, by D. Patrick

If you've mastered arithmetic, fractions, and the basic algebraic concepts illustrated in the problems below, you are ready for the Art of Problem Solving's **Introduction to Counting & Probability** book.

- 1. Solving linear equations. Sample questions:
 - (a) Find x: 31x + 24 = 365.
 - (b) Find n: 7n 4 = 2n + 16.
- 2. Simplifying fractions containing algebraic expressions. Reduce the following fractions:
 - (a) $\frac{3x+6}{3}$.
 - (b) $\frac{n(n-1)}{n(n+1)(r-1)}$.
- 3. Addition and subtraction of quotients with different algebraic denominators. Write each of the following as a single fraction in simplest terms:

(a)
$$\frac{1}{mn} + \frac{1}{m(2n-2)}$$
.
(b) $\frac{r}{r-1} - \frac{r-1}{r}$.

- 4. Multiplication of polynomials and binomials. Expand each of the following:
 - (a) (x+2)(x+3).
 - **(b)** $(x+y)(x^2+2xy+y^2)$.
 - (c) $(x-1)^4$. (Hint: $(x-1)^4 = (x-1)(x-1)^3$.)

Are You Ready?

Introduction to Counting & Probability, by D. Patrick

The answers to Are You Ready for Introduction to Counting & Probability are below.

- 1. (a) x = 11
 - (b) n = 4.
- 2. (a) x + 2.
 - (b) $\frac{n-1}{(n+1)(r-1)}$ or $\frac{n-1}{nr+r-n-1}$.
- 3. (a) $\frac{3n-2}{mn(2n-2)}$ or $\frac{3n-2}{2mn^2-2mn}$.
 - (b) $\frac{2r-1}{r(r-1)}$ or $\frac{2r-1}{r^2-r}$
- 4. (a) $x^2 + 5x + 6$.

(b)
$$x^3 + 3x^2y + 3xy^2 + y^3$$

(c) $x^4 - 4x^3 + 6x^2 - 4x + 1$.

