Do You Know?

If you can solve nearly all of the following problems with little difficulty without a calculator, then the text Precalculus would only serve as a review for you.

1. What is the value of $\tan 75^{\circ}$?
2. Simplify $\cos \left(12^{\circ}\right) \cos \left(24^{\circ}\right) \cos \left(48^{\circ}\right) \cos \left(96^{\circ}\right)$.
3. Let $n \geq 3$ be a positive integer, and let $P_{0} P_{1} \cdots P_{n-1}$ be a regular n-gon inscribed in a circle with radius 1. Compute $P_{0} P_{1} \cdot P_{0} P_{2} \cdot P_{0} P_{3} \cdots P_{0} P_{n-1}$ in terms of n.
4. What is the value of $\cos ^{2} 10^{\circ}+\cos ^{2} 50^{\circ}-\sin 40^{\circ} \sin 80^{\circ}$?
5. Find the roots of $z^{6}+z^{4}+z^{2}+1$.
6. Suppose $\frac{\cos 3 x}{\cos x}=\frac{1}{3}$ for some angle $x, 0 \leq x \leq \frac{\pi}{2}$. Determine $\frac{\sin 3 x}{\sin x}$ for the same x.
7. Find the volume of the tetrahedron with vertices $(-1,3,0),(2,1,7),(-4,3,2),(3,1,-2)$.
8. A sequence $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right), \ldots$ of points in the coordinate plane satisfies

$$
\left(a_{n+1}, b_{n+1}\right)=\left(\sqrt{3} a_{n}-b_{n}, \sqrt{3} b_{n}+a_{n}\right)
$$

for all positive integers n. Suppose that $\left(a_{100}, b_{100}\right)=(2,4)$. What is $a_{1}+b_{1}$?
9. Find $\operatorname{Im}\left(\left(\cos 12^{\circ}+i \sin 12^{\circ}+\cos 48^{\circ}+i \sin 48^{\circ}\right)^{6}\right)$.
10. Evaluate $\sin 10^{\circ} \sin 20^{\circ} \sin 30^{\circ} \cdots \sin 170^{\circ}$.

The answers to Do You Know Precalculus are below. (The solutions in the text and the solutions manual include detailed explanations, as opposed to the mere answers provided below.)

1. $2+\sqrt{3}$
2. $-\frac{1}{16}$
3. n
4. $\frac{3}{4}$
5. $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i, i,-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i,-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i,-i, \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i$
6. $\frac{7}{3}$
7. $25 / 3$
8. $1 / 2^{98}$
9. 0
10. $\frac{9}{65536}$
