Factors, Multiples, and Patterns Assessment

1. What are the next three multiples of 6 after 18 ?
(A) $20,26,32$
(B) $24,30,36$
(C) $24,36,42$
(D) $36,42,48$
2. Consider these numbers:
$8,10,12,14,16$.
Name all that are multiples of both 2 and 4.
(A) 8,12
(B) 8,16
(C) $8,12,14$
(D) $8,12,16$
3. Which of these is a factor pair for 9 ?
(A) $2+7$
(B) 3×3
(C) 3×6
(D) $9+1$
4. In which list are all the numbers prime?
(A) $2,3,9$
(B) 1, 3, 7
(C) $2,3,7$
(D) $3,11,15$
5. In which list are all the numbers composite?
(A) $6,9,12$
(B) $2,4,6$
(C) $1,7,9$
(D) $3,5,7$
6. Consider the sequence $7,10,13$, $16,19, \ldots$. Which of the following appears in the sequence?
(A) 20
(B) 30
(C) 40
(D) 50

Factors, Multiples, and Patterns Assessment
7. One factor pair for 21 is 3×7. Jen says 7×3 is not a different factor pair because it is just the same two numbers. Raul says 7×3 is different. What argument could you use to support Raul's answer?
\qquad
\qquad
\qquad
\qquad
\qquad
8. Most years, February has 28 days. Whenever a 28-day February starts on a Sunday, it ends on a Saturday. Draw a picture to show why this is true, and explain it using multiples.
\qquad
\qquad
\qquad
\qquad
\qquad
9. Starting with 6 , write a sequence of numbers using the rule add 3 . Write at least 5 terms. Describe the sequence as many ways as you can.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

