\qquad

Use Fraction Towers to model the problem. Perform the division.

1. $\frac{2}{3} \div \frac{1}{6}=$ \qquad

Use Fraction Towers to model the problem. Sketch the model. Perform the division.
2. $\frac{5}{6} \div \frac{5}{12}=$ \qquad

Use Fraction Towers to model the problem. Solve the problem.
3. Aidan has $\frac{4}{5}$ of a gallon of juice. He wants to pour it into $\frac{1}{10}$-gallon jars. How many jars can he fill?

$$
\frac{4}{5} \div \frac{1}{10}=
$$

\qquad
Divide. Simplify, if possible.
4. $\frac{1}{2} \div \frac{1}{2}=$
6. $\frac{5}{8} \div \frac{5}{6}=$ \qquad 7. $\frac{2}{5} \div \frac{3}{5}=$ \qquad
8. $\frac{7}{10} \div \frac{4}{5}=$ \qquad 9. $\frac{7}{10} \div \frac{7}{8}=$ \qquad

Name

Challenge! Create a story problem and draw a model to show $\frac{5}{6} \div \frac{1}{3}$.
Divide to answer the problem. Simplify, if possible.
\qquad

Use Color Tiles and a number line to model each integer. Write the integer.
1.

2.

Using Color Tiles, model each integer. Sketch the model.
3. -4

4. 1

Use a number line to locate and compare each pair of integers. Write an inequality.
5. 5 and -2
6. -8 and -6
7. 9 and -9
8. 4 and 3
9. -10 and 11
10. -7 and - 6

Use <, =, or > to complete each inequality.
11.
87

12. -31
 28
13. $-914 \bigcirc-914$

Name

Challenge! When comparing integers, a number line is not always available or practical. Write guidelines you can use when comparing integers without a number line.
\qquad

Use an XY Coordinate Pegboard to plot each point. Write the ordered pair for each labeled point.
1.

A \qquad B \qquad
C \qquad D \qquad
E \qquad F \qquad
\qquad

Using an XY Coordinate Pegboard, plot the ordered pairs. Sketch the points on the graph below. Label the points.
2. $L(3,5) \quad M(-2,4) \quad N(6,0)$

3. $S(0,-4)$
$T(-1,1)$
$U(3,-2)$

Graph and label each ordered pair on the coordinate plane.
4. $A(-1,2)$
$B(3,0)$
$C(4,6)$
$D(1,-5)$
E ($0,-2$)
$F(7,-4)$
$G(5,7)$
$H(-6,0)$
$I(-7,1)$
$J(-4,-4)$
$K(-3,3) \quad L(0,-4)$
$M(-2,-1) \quad N(0,0)$

Name

Challenge! Identify the signs of the ordered pairs in each quadrant of the coordinate plane. Draw a picture to help.
\qquad
Use Fraction Towers to model each fraction on a number line. Write the fractions as decimals in order from least to greatest.

1. \square

\qquad

Using Fraction Towers, model each fraction. Sketch the models using the number line. Write the equivalent decimals in order from least to greatest.
2. $\frac{3}{8}, \frac{1}{6}, \frac{3}{10}, \frac{2}{5}$
least
greatest
\qquad
\qquad

Write the fractions as decimals in order from least to greatest.
3. $\frac{2}{3}, \frac{3}{4}, \frac{7}{10}$
4. $\frac{3}{5}, \frac{3}{10}, \frac{7}{12}$
5. $\frac{3}{8}, \frac{1}{3}, \frac{5}{12}$
6. $\frac{5}{6}, \frac{7}{8}, \frac{3}{4}$

Name
Challenge! Draw a diagram to show why $\frac{1}{5}$ is greater than $\frac{1}{6}$. Use this to compare the fractions $\frac{4}{5}$ and $\frac{4}{6}$. Explain.
\qquad
Use Fraction Towers to model each fraction on a number line. Tell whether the fraction is closer to 0 or 1.
1.

Using Fraction Towers, model each fraction. Sketch the model on a number line.
Tell whether the fraction is closer to 0 or 1.
2. $\frac{5}{12}$ \qquad
3. $\frac{1}{3}$ \qquad

Estimate each fraction. Tell whether the fraction is closer to 0 or 1.
4. $\frac{7}{8}$
5. $\frac{3}{10}$
6. $\frac{3}{4}$
7. $\frac{4}{5}$
8. $\frac{9}{12}$
9. $\frac{2}{6}$

Name

Challenge! How are the rounding rules for fractions similar to the rounding rules for whole numbers?
\qquad

Use Fraction Towers to model each rational number on a number line. Write each number. Then write the numbers in order from least to greatest.
1.

Numbers:

Ordered from least to greatest:
\qquad

Using Fraction Towers, model each rational number. Sketch the models on number lines. Write the numbers in order from least to greatest.
2. $\frac{3}{8},-\frac{1}{4}, \frac{7}{12},-\frac{2}{5}$

Ordered from least to greatest: \qquad

Use < or > to compare the numbers.
3. $\frac{7}{8}$

$\frac{3}{4}$
4. $\frac{7}{10}$

$\frac{9}{12}$
5. $\frac{1}{3}$
 $\frac{1}{4}$
6. $\frac{2}{5}$

$\frac{1}{2}$
7. $\frac{1}{6}$

$\frac{1}{4}$
8. $\frac{3}{12}$
 $\frac{2}{6}$

Name

Challenge! Explain how comparing negative rational numbers is different than comparing positive rational numbers.
\qquad

Use Cuisenaire Rods and a number line. Model the numbers. Write the absolute values. Find the greater absolute value.
1.

\qquad
$|-3|=$
$|9|=$ \qquad Greater absolute value: \qquad
2.

$|-8|=$ \qquad
$|6|=$ \qquad Greater absolute value: \qquad

Write a situation that each integer could represent.
3. +17 \qquad
\qquad
5. -9 \qquad 6. +12 \qquad
\qquad

Write the absolute value.
7. $|-40|=$ \qquad
8. $|33|=$ \qquad
9. $|16|=$ \qquad 10. $|-11|=$ \qquad
11. $|-90|=$ \qquad 12. $|4|=$ \qquad

Name

Challenge! Consider point A on a number line. A represents a negative number. How would the absolute value of A change if it is moved 4 units to the left? Explain.
\qquad

