Glossary of Manipulatives

	Algebra Tiles ${ }^{\mathrm{TM}}$ These tiles involve students in learning algebraic concepts, including adding and subtracting polynomials, factoring trinomials, and the Zero Principle. Each tile represents the positive and negative of a quantity: $\pm x, \pm x^{2}$, and ± 1. The set of 32 pieces includes 4 squared variables, 8 variables, and 20 constants.
	AngLegs ${ }^{\circledR}$ AngLegs enable students to study polygons, perimeter, area, angle measurement, side lengths, and more. The set includes 72 snap-together AngLegs pieces (12 each of six different lengths) and two snap-on View-Thru ${ }^{\circledR}$ protractors.
	Centimeter Cubes These plastic cubes come in 10 colors. They can be used to teach counting, patterning, and spatial reasoning. They are suitable for measuring area and volume and also may be used to generate data for the study of probability.
	Color Tiles These 1 " square plastic tiles come in four different colors: red, blue, yellow, and green. They can be used to explore many mathematical concepts, including those associated with geometry, patterns, and number sense.
	Folding Number Line This manipulative was created to help students understand the concept of rational numbers and their order on a number line. The Folding Number Line helps build an understanding of rational numbers between 0 and 1 and between 1 and 2 on a linear model. One side of the Folding Number Line shows the order of decimal numbers; the other side shows the order of fractions. Students gain an understanding of rational numbers and can extend their understanding of larger mixed numbers. On the decimal side, the Folding Number Line first shows numbers from 0 through 2 in tenths; when expanded, it shows decimal numbers in order by hundredths. When expanded, the fraction side of the Folding Number Line shows in order fractions between 0 to 1 and between 1 to 2 that correspond to, or are equivalent to, the decimals on the other side.

Index

Boldface page numbers indicate when a manipulative is used in the Try It! activity.

Algeblocks ${ }^{\circledR}$
construct a function to model a
linear relationship, 72
linear equations, 38, 42, 46
Algeblocks Sentences Mat
linear equations, 42, 46
Algebra Tiles ${ }^{\text {TM }}$
linear equations, 39, 43, 47
AngLegs ${ }^{\circledR}$
congruency and transformations,

78, 79

parallel lines intersected by a transversal, 102, 103
Pythagorean theorem, 107
translations (slides), 86 triangle sum theorem, 98, 99
Centimeter Cubes
cube root, 23
dilations, 94
linear equations, solving systems of, 51
squares and square roots, 18
translations (slides), 86
Color Tiles
dilations, 94
Pythagorean theorem, 106
square root, 8, 9
squares and square roots, 19
Common Core State Standards 8.NS The Number System 8.NS.2, 8-11, 12-15
8.EE Expressions and Equations
8.EE.2, 18-21, 22-25
8.EE.5, 26-29, 34-37
8.EE.6, 34-37
8.EE.7a, 38-41
8.EE.7b, 42-45, 46-49
8.EE.8a, 30-33
8.EE.8b, 50-53
8.EE.8c, 50-53
8.F Functions
8.F.3, 56-59
8.F.4, 60-63, 64-67,

$$
68-71,72-75
$$

8.G Geometry
8.G.2, 78-81
8.G.3, 82-85, 86-89,

90-93, 94-97
8.G.5, 98-101, 102-105
8.G.6, 106-109
8.G.7, 106-109
8.SP Statistics and Probability
8.SP.1, 112-115, 116-119, 120-123
8.SP.2, 116-119,

120-123
8.SP.3, 116-119

Congruency and transformation, 78-81
Cube root, 22-25
Cuisenaire ${ }^{\circledR}$ Rods
cube root, 22
squares and square roots, 18
Dilations, 94-97
Expressions and equations
cube root, 22-25
linear equations
one, no, or infinite
solutions, 38-41
multi-step
variables on both
sides, 46-49
variables on one side, 42-45
solving systems of, 50-53 slope graphing rates of change, 26-29, 30-33 proportional relationships of linear equations, 34-37
squares and square roots, 18-21
Folding Number Line
cube root, 22
square root, $8,12,13$
Functions
construct, to model a linear relationship, 72-75
linear equations, graphing, 56-63
nonlinear equations, 56-63
slope-intercept form, 64-67
symbolic algebra, 68-71
Geoboard
squares, 18
Geometry
congruency and transformation, 78-81
dilations, 94-97
parallel lines intersected by a transversal, 102-105
Pythagorean theorem, 106-109
reflections (flips), 82-85
rotations (turns), 90-93
translations (slides), 86-89
triangle sum theorem, 98-101
Graphing functions, 56-71

Linear equations
graphing, 56-71
multi-step

> variables on both sides, $46-49$
> variables on one side, $42-45$
one, no, or infinite solutions, 38-41
proportional relationships of slope and, 34-37
slope of
graphing rates of change, 26-33
proportional relationships to linear equations, 34-37
slope-intercept form, 64-67
solving systems of, 50-53
Number system
square root, irrational, 8-15
Pattern Blocks
congruency and transformations, 78
rotations (turns), 90, 91

Protractor

triangle sum theorem, 98
Pythagorean theorem, 106-109
Reflections (flips), 82-85
Rotations (turns), 90-93
Scatter plots
line of best fit (regression line or least squares line), 116-119
understanding basics, 112-115
use to make a conjecture, 120-123
Slope of linear equations, 26-37
Slope-intercept form, 64-67
Snap Cubes ${ }^{\circledR}$
cube root, 22
Square root, 8-15, 18-21
Squares, 18-21
Statistics and Probability
scatter plots
line of best fit
(regression line or
least squares line),
116-119
understanding basics, 112-115
use to make a
conjecture, 120-123
Symbolic algebra, 68-71
Translations (slides), 86-89
Triangle sum theorem, 98-101

XY Coordinate Pegboard
construct a function to model a linear relationship, 73
dilations, 95
linear equations
graphing, 56, 57
solving systems of, 50
linear functions, determine if
linear or not, 60, 61
reflections (flips), 82, 83
rotations (turns), 90
slope
graphing rates of change, 26, 27, 30, 31
proportional
relationships to linear equations, 35
slope-intercept form, 64, 65
symbolic algebra, 69
translations (slides), 87

scatter plots

line of best fit (regression line or least squares line), 117
understanding, 112, 113
use to make a conjecture, 120, 121

