Name \qquad
1
Four number cards are shown below.

Use two of the cards to
a. make the smallest fraction.
b. make the next smallest fraction.
\qquad

Try This

- Use Cuisenaire Rods.
- Build a model for the fractions.
- Add rods to make a common denominator, if necessary.
- Draw and color your model.
- Rewrite the fractions using a common denominator.
- Write >, <, or = in the circles.
- For problems 5-7, compare without building models.

1. $\frac{1}{2} \bigcirc \frac{2}{3}$

2. $\frac{3}{5} \bigcirc \frac{1}{2}$

3. $\frac{3}{4} \bigcirc \frac{5}{8}$

4. $\frac{2}{3} \bigcirc \frac{7}{9}$

5. $\frac{5}{6} \bigcirc \frac{3}{4}$
6. $\frac{2}{3} \bigcirc \frac{4}{6}$
7. $\frac{3}{8} \bigcirc \frac{2}{3}$
\qquad
Use Cuisenaire Rods to build the model. Rename the fractions to make a common denominator. Compare the fractions. Write $>,<$, or $=$ in the circles.
1.

Dark Green			
Red	Red		
Red			
White	White	White	White
White	White		

2. $\frac{2}{5} \bigcirc \frac{1}{2}$

Use Cuisenaire Rods to model the fractions. Add rods to make a common denominator, if necessary. Draw and color your model. Rewrite the fractions using a common denominator. Write $>$, <, or $=$ in the circles.
3. $\frac{7}{8} \bigcirc \frac{3}{4}$

4. $\frac{2}{3} \bigcirc \frac{1}{2}$

Compare the fractions. Write $>$, <, or $=$.
5. $\frac{1}{2} \bigcirc \frac{5}{10}$
6. $\frac{3}{4} \bigcirc \frac{2}{3}$
7. $\frac{7}{12} \bigcirc \frac{4}{6}$

Name \qquad

Suppose you have the following cards:

Use two cards to make a fraction that is
a. greater than four-fifths.
b. less than one-fifth.
c. more than two.
d. closest to one-sixth.
\qquad

Try This

- Use Fraction Circles to model each given fraction.
- Adjust your models so both are made with the same number of pieces.
- Compare the fractions. Write $<,>$, or $=$ in the circle.
- For problems 1-3, draw and color your adjusted models.
- For problems 4-8, compare without building models.

1. $\frac{1}{5} \bigcirc \frac{2}{8}$ $\frac{2}{8}$
2. $\frac{3}{8} \bigcirc \frac{6}{10}$
3. $\frac{2}{8} \bigcirc \frac{1}{6}$
4. $\frac{2}{5} \bigcirc \frac{1}{4}$
5. $\frac{1}{3} \bigcirc \frac{4}{12}$
6. $\frac{6}{9} \bigcirc \frac{2}{3}$
7. $\frac{4}{10} \bigcirc \frac{2}{4}$
8. $\frac{9}{12} \bigcirc \frac{3}{5}$
9. When each fraction is represented by the same number of pieces, how do the denominators representing those pieces help you determine which fraction is greater?
\qquad
\qquad
\qquad
Use Fraction Circles to build the model. Rewrite the fraction with the same denominator. Write $<,>$, or $=$ in the circle.
10.

2. $\frac{2}{5} \bigcirc \frac{4}{6}$

Use Fraction Circles to model each fraction. Then change one model so both use the same number of pieces. Draw the models by shading or coloring the circles. Write <, >, or =.
3. $\frac{2}{8} \bigcirc \frac{1}{3}$

4. $\frac{2}{3} \bigcirc \frac{4}{5}$

Compare the fractions. Write $<$, $>$, or $=$.
5. $\frac{3}{6} \bigcirc \frac{6}{12}$
6. $\frac{2}{8} \bigcirc \frac{1}{2}$
7. $\frac{1}{3} \bigcirc \frac{3}{10}$
8. $\frac{6}{8} \bigcirc \frac{2}{3}$

Name \qquad

Try This

- For problem 1, use Fraction Towers to model the fractions.
- Draw your models on the outlines. Label each fraction piece.
- For problems 2-7, refer to your drawings in problem 1.

Write $<,>$, or $=$ in the \bigcirc.

- For problems 8-10, write $<,>$, or $=$ in the \bigcirc.

1.

2. $\frac{5}{12} \bigcirc \frac{1}{2}$
3. $\frac{3}{5} \bigcirc \frac{1}{2}$
4. $\frac{3}{8} \bigcirc \frac{7}{10}$
5. $\frac{3}{5} \bigcirc \frac{3}{8}$
6. $\frac{5}{12} \bigcirc \frac{3}{5}$
7. $\frac{5}{12} \bigcirc \frac{7}{10}$
8. $\frac{1}{3} \bigcirc \frac{3}{5}$
9. $\frac{5}{8} \bigcirc \frac{1}{3}$
10. $\frac{3}{6} \bigcirc \frac{5}{10}$
\qquad
Use Fraction Towers to build the model on a Fraction Number Line. Compare the fractions. Write $<,>$, or $=$ in the \bigcirc.
1.

2. $\frac{3}{6} \bigcirc \frac{1}{2}$

Use Fraction Towers to model the fractions on a Fraction Number Line. Draw your model and compare the fractions. Write $<$, $>$, or $=$ in the \square
3.

4.

Compare the fractions. Write $<,>$, or $=$ in the \square
5. $\frac{3}{4} \bigcirc \frac{1}{2}$
6. $\frac{4}{10} \bigcirc \frac{1}{2}$
7. $\frac{4}{10} \bigcirc \frac{3}{4}$
8. $\frac{3}{8} \bigcirc \frac{1}{2}$
9. $\frac{3}{5} \bigcirc \frac{1}{2}$
10. $\frac{3}{5} \bigcirc \frac{3}{8}$

Name \qquad
4
Express the decimals as fractions or mixed numbers.
a. 1.01
b. 0.04
c. 3.5
d. 0.91
\qquad

Try This

- Use Base Ten Blocks to model each number. Let the flat represent one whole.
- Write the decimal under each picture.
- Write < or > in the

1.

3.

5.

Write < or > in the

7. $0.7 \bigcirc 0.4$
8. 0.070.7
9. 0.60.48
10. $0.46 \bigcirc 0.4$
13. 0.90

0.19
14. 0.54
 0.45
15. 2.83

16. $7.04 \bigcirc 7.34$
17. 4.33
 4.30
18
8. 6.3
 60.3

Name \qquad
Use Base Ten Blocks to build each model. Let the flat represent one whole. Compare the decimals using $>$, <, or $=$.

1. $0.42 \bigcirc 0.54$

2. $0.2 \bigcirc 0.20$

Use Base Ten Blocks to model each decimal. Draw your models on the grids. Compare the decimals using $>$, <, or $=$.
3.

4.

Compare the decimals using $>$, $<$, or $=$.
5. $0.28 \bigcirc 0.35$
6. $0.82 \bigcirc 0.80$
7. $0.75 \bigcirc 0.9$
8. $0.54 \bigcirc 0.5$
9. $0.64 \bigcirc 0.6$
10. $0.5 \bigcirc 0.50$

