Fourth Grade Answer Key

Unit 6: Measurement

Page 2 Blackline Masters Page 15 Cards

\qquad

Problem of the Day

Lesson 1

Write the fraction below in the simplest form.

$$
\frac{7}{14} \quad \frac{1}{2}
$$

Lesson 2

Which unit of weight would you use to describe the weight of a car?
A. ounce
B. pound
C. ton

Lesson 3

Determine the appropriate unit of measurement for the length of the lion.
A. 5 feet
B. 5 inches

C. 5 miles
D. 5 yards

Lesson 4

Complete the conversions below.
$2 \mathrm{ft} .=$ \qquad in.
$4 \mathrm{yd} .=$ \qquad ft.
$5 \mathrm{yd} .=$ 180 in.

Lesson 5

Determine the appropriate unit of measurement for the capacity of the jar.
A. 5 gallons
B. 2 cups
C. 5 pints
D. 2 quarts

\qquad

Problem of the Day

Lesson 6

Complete the conversions below.

1 gal. = \qquad c.
$4 \mathrm{qt} .=$ \qquad pt.
$8 \mathrm{c} .=$ \qquad qt

Lesson 7

Determine the appropriate unit of measurement for the weight of the marker.
A. 3 tons
B. 3 ounces
C. 6 pounds
D. 1 ton

Lesson 8

Complete the conversions below.
$5 \mathrm{lbs} .=$ \qquad oz.
$3 \mathrm{~T} .=6,000 \mathrm{lbs}$.
32 oz. $=$ \qquad lbs.

Lesson 9

Determine the appropriate unit of measure.

B. 10 meters
C. 10 centimeters
D. 10 kilometers

Lesson 10

Complete the conversions below.
$2 \mathrm{~cm} .=20 \mathrm{~mm}$.
$5 \mathrm{~m} .=500 \mathrm{~cm}$.
$2 \mathrm{~km} .=\underline{2,000 \mathrm{~m}}$.
\qquad

Problem of the Day

Lesson 11

Determine the appropriate unit of measurement for the capacity of the watering can.
A. 10 liters
B. 10 milliliters
C. 2 liters
D. 2 milliliters

Lesson 12

Complete the conversions below.
$1 \mathrm{~L} .=\underline{1,000 \mathrm{~mL}}$.
$4,000 \mathrm{~mL} .=4$ $8 \mathrm{~L} .=\underline{0.0008 \mathrm{~mL}}$.

Lesson 13

Determine the appropriate unit of measurement for the mass of the dog.

Lesson 14

Complete the conversions below.
$2 \mathrm{~kg} .=2,000 \mathrm{~g}$.
$5,000 \mathrm{mg} .=$ g.
$6,000 \mathrm{g}=$. \qquad kg .

Lesson 15

Walton spent 3 hours and 45 minutes volunteering for his school. If Walton finished volunteering at 4:05 p.m., what time did he start volunteering?

Answer: \qquad 12:20 p.m.
\qquad

Problem of the Day

Lesson 16

Doug went shopping at 9:45 a.m. He spent 1 hour and 35 minutes looking for a new pair of shoes. What time did Doug finish looking for shoes?

$$
\text { Answer: } \quad \text { 11:20 a.m. }
$$

Lesson 17

Find the area and perimeter of the square below.

Perimeter: \qquad
Area:
121 sq. in.

Lesson 18

Find the length of the missing side of the figure below.

Perimeter $=37$ in.

Answer: \qquad

Lesson 19
Find the area and perimeter of the figure below.

5 in .
Perimeter:
28 in.
Area:
29 sq. in.

Lesson 20

Mike and Jamie both drew plans for their gardens. Who will have a garden with a larger area? How much larger will the area be?

> Answer: Jamie's garden is larger by 1 square foot.
\qquad

Pre-Assessment

Read each question below and solve.

1. Identify the most appropriate unit of measurement for the object below.

capacity of a can of soda
A. gallons
B. cups
C. feet
D. kilograms
2. Find the perimeter of the figure below.

3. Identify the most appropriate unit of measurement for the cat below.

weight of a cat
A. tons
B. fluid ounces
C. pounds
D. meters
4. Find the area of the figure below.

A. 42 inches
B. 56 inches
C. 168 inches
D. 196 inches
A. $27 \mathrm{ft}^{2}{ }^{2}$
B. $78 \mathrm{ft}{ }^{2}$
C. $87 \mathrm{ft}^{2}$
D. $93 \mathrm{ft}^{2}$

Solve the problem below.
5. Tabitha has dance class every Thursday from 7:05 p.m. until 8:45 p.m. How much time does Tabitha spend in dance class every Thursday?
A. 2 hours and 5 minutes
B. 1 hour and 50 minutes
C. 1 hour and 45 minutes
D. 1 hour and 40 minutes

Customary Measurement Quiz

Examine each item below and determine the appropriate customary measurement.
1.

capacity of pitcher
A. 2 pints
B. 5 quarts
C. 1 cup
D. 3 gallons
4.

length of fork
A. 1 inch
B. 1 foot
C. 9 feet
D. 9 inches
2.

weight of pumpkin
A. 15 ounces
B. 15 pounds
C. 5 ounces
D. 1 ton
5.

weight of car
A. 2 pounds
B. 12 ounces
C. 2 tons
D. 12 pounds
3.

height of one-story house
A. 9 inches
B. 9 miles
C. 9 yards
D. 9 feet
6.

capacity of pond
A. 20 gallons
B. 20 pints
C. 20 quarts
D. 20 fluid ounces

Use the input/output table to complete each conversion.
7.

Input	Output
$1 \mathrm{~T} .=2,000 \mathrm{lb}$.	
$8 \mathrm{~T} .=\underline{16,000} \mathrm{lb}$.	

8.

Input	Output
$2 \mathrm{qt}=.8 \mathrm{c}$.	
$4 \mathrm{qt}=.32 \mathrm{c}$.	

11.

Input	Output
$16 \mathrm{oz} .=1 \mathrm{lb}$.	
$\underline{128} \mathrm{oz} .=8 \mathrm{lb}$	

9.

Input	Output
$3 \mathrm{ft} .=36 \mathrm{in}$.	
$8 \mathrm{ft} .=96 \mathrm{in}$	

12.

Input	Output
1 gal. $=16 \mathrm{c}$.	
9 gal. $=144 \mathrm{c}$.	

\qquad

Metric Measurement Quiz

Examine each item below and determine the appropriate metric measurement.
1.

capacity of
measuring cup
A. 5 milliliters
B. 5 liters
C. 200 milliliters
D. 100 liters
4.

mass of car
A. 10,000 grams
B. 10,000 kilograms
C. 10,000 milligrams
D. 1,000 kilograms
2.

length of a state
A. 600,000 meters
B. 600,000 kilometers
C. 500 meters
D. 500 kilometers
5.

capacity of kiddie pool
A. 500 liters
B. 500 milliliters
C. 6,000 liters
D. 6,000 milliliters
6.

height of glue bottle
A. 1 meter
B. 1 centimeter
C. 11 meters
D. 11 centimeters

Use each Input/Output table to complete the conversion.
7.

Input	Output
$5 \mathrm{~kg} .=5,000 \mathrm{~g}$.	
2	kg.
$2,000 \mathrm{~g}$.	

8.

Input	Output
8 L.	$=8,000 \mathrm{~mL}$.
10 L.	$=10,000 \mathrm{~mL}$.

11.

Input	Output
$1 \mathrm{~m} .=1,000 \mathrm{~mm}$.	
$6 \mathrm{~m} .=6,000 \mathrm{~mm}$.	

9.

Input	Output
$3 \mathrm{~cm} .=30 \mathrm{~mm}$.	
$11 \mathrm{~cm} .=\underline{110} \mathrm{~mm}$	

$$
\text { 12. } \begin{array}{|c|c|}
\hline \text { Input } & \text { Output } \\
\hline 1 \mathrm{~L} .=1,000 \mathrm{~mL} . \\
\hline 9 \mathrm{~L} .=9,000 \mathrm{~mL} . \\
\hline
\end{array}
$$

\qquad

Elapsed Time

READ THE PROBLEM

Rachel babysits every Wednesday night at 6:15 p.m. She babysits for 1 hour and 35 minutes. What time does Rachel finish babysitting?

START TIME:6:15 p.m.END TIME: 7:50 p.m. TIME PASSED: 1:35
STRATEGY \#1
Number Line
Use a number line to model the equation and solve for the missing time.

STRATEGY \#2

Standard Algorithm
Use an addition or subtraction problem to solve for the end time.
$6: 15+1: 135=7: 50$
\qquad

Calculating Time Quiz

Read each word problem below. Identify the times that are given and solve for the elapsed time. Solve by using both a number line and standard algorithm.

1. If Megan started practice at the time on the clock below and practice lasted for 2 hours and 15 minutes, what time did practice end?
Start Time: 4:55 End Time: 7:10 Elapsed Time: 2:15

Number Line:

Standard Algorithm:
$4: 55+2: 15=7: 10$
3. Courtney had a doctor's appointment at 3:00. If it takes her 35 minutes to get to the doctor's office, what time should she leave her house?

Start Time: 2:25 End Time: 3:00
Elapsed Time: 0:35

Number Line:

Standard Algorithm:
$2: 25+0: 35=3: 00$
2. Gregg drove for 1 hour and 50 minutes. If he arrived at his destination at the time on the clock below, what time did he start driving?

Number Line:

Standard Algorithm:

$$
5: 05-1: 05=3: 15
$$

4. Josh started his homework at 6:45 p.m. He finished his homework at 8:05 p.m. How long did Josh spend on his homework?

Start Time:6:45 End Time: 8:05 p.m.
Elapsed Time: 1:20

Number Line:

Standard Algorithm:

$$
6: 45+1: 20=8: 05
$$

Area and Perimeter Quiz

Read each word problem below and solve.

1. What is the area of the figure below?

Answer: \qquad
3. Find the area of the square below.

13 in.

Answer: 169 sq. in.
2. Find the perimeter of the square below.

Answer: $\quad 64 \mathrm{ft}$.
4. What is the perimeter of the figure below?

Answer:
48 ft .
5. Jane put a rug in her living room. If one side is 7 feet long and the other side is 15 feet long, what is the perimeter of the rug? (Hint: Draw a model.)

A. 44 feet

B. 89 feet
C. 105 feet
D. 120 feet
6. John and Kylie compared the sizes of their gardens. Which garden has a smaller area? How much smaller is the area?

16 ft .
27 ft.

A. Kylie; $216 \mathrm{ft}^{2}$

B. John; $256 \mathrm{ft}^{2}$
C. Kylie; $40 \mathrm{ft}^{2}$
D. John; $40 \mathrm{ft}^{2}$
8. Reagan planted a garden in the shape of a rectangle. If one side of the rectangle is 14 feet and the other side is 9 feet, what is the area of Reagan's garden? (Hint: Draw a model.)

Answer: 126 ft .
\qquad

Assessment

Complete the conversion charts below.
1.

Input	Output
$5 \mathrm{~kg} .=5,000 \mathrm{~g}$.	
$2 \mathrm{kg}=2,.000 \mathrm{~g}$.	

2.

Input	Output
8 L.	$=8,000 \mathrm{~mL}$.
$10 \mathrm{L}=10,.000 \mathrm{~mL}$.	

3.

Input	Output
$3 \mathrm{~cm} .=30 \mathrm{~mm}$.	
$11 \mathrm{~cm} .=110 \mathrm{~mm}$	

4.

Input	Output
$9 \mathrm{g}. .=9,000 \mathrm{mg}$.	
$6 \mathrm{~g} .=6,000 \mathrm{mg}$.	

5.

Input	Output
$1 \mathrm{~m} .=1,000 \mathrm{~mm}$.	
$6 \mathrm{~m} .=6,000 \mathrm{~mm}$.	

6.

Input	Output
$1 \mathrm{L}=1,.000 \mathrm{~mL}$.	
$9 \mathrm{L}=.\underline{9,000} \mathrm{~mL}$.	

Determine the appropriate measurement for the images below.
7.

capacity of water bottle
A. 1 cup
B. 1 gallon
C. 1 pint
D. 2 quarts
A. 2,000 kilograms
B. 2,000 grams
C. 20,000 milligrams
D. 800 grams
8.

mass of car
9.

height of BBQ sauce bottle
A. 1 foot
B. 1 inch
C. 1 yard
D. 1 mile

Determine the area and perimeter of the figures below.
10.

11.

12.

Perimeter: 80 ft.
Area: \qquad 400 sq. ft.

Perimeter: $\quad 42 \mathrm{ft}$.
Area: \qquad

Perimeter: 26 m .
Area: \qquad
13. Michael drew a square whose sides measured 18 inches. Gina drew a rectangle whose sides measured 16 inches by 13 inches. Whose figure had a smaller perimeter? How much smaller was it? (Hint: Draw a model to solve.)
A. Michael; 14 inches
B. Gina; 14 inches
C. Michael; 116 inches
D. Gina; 116 inches
15. Adam wants to measure the length of a street in his town. Which unit of measure would be the most appropriate?

A. kilometers

B. centimeters
C. meters
D. millimeters
17. Terence arrived at an appointment at $4: 15$ p.m. He left his house at 3:10 p.m. to get there. How long did it take Terence to get there?
A. 1 hour and 5 minutes
B. 1 hour
C. 55 minutes
D. 50 minutes
19. Ryan has football practice from 6:45 p.m. until 8:30 p.m. How long will Ryan be at practice?
A. 1 hour and 30 minutes
B. 1 hour and 45 minutes
C. 2 hours and 30 minutes
D. 2 hours and 45 minutes
14. Chuck and Kaiden compare the sizes of their gardens. Whose garden has a larger area? How much larger?
A. Kaiden; $18 \mathrm{ft}^{2}$
B. Chuck; $18 \mathrm{ft}^{2}$
C. Kaiden; $125 \mathrm{ft}^{2}$

D. Chuck; $125 \mathrm{ft}^{2}$

16. Natalie wants to measure the capacity of her bathtub. Which unit of measure would be the most appropriate?
A. cups
B. quarts
C. gallons
D. pints
18. Emmy worked on her painting for 2 hours and 25 minutes. If she started working on her painting at 3:50 p.m, what time did she finish working on it?
A. 5:55 p.m.
B. 6:05 p.m.
C. $6: 15$ p.m.
D. 6:25 p.m.
20. Lilly went on a run for 1 hour and 50 minutes. Lilly finished her run at 7:30 a.m. What time did Lilly start her run?
A. 5:30 a.m.
B. 5:40 a.m.
C. 6:00 a.m.
D. 6:20 a.m.

Examine each item below and determine the appropriate customary measurements.

A. 3 feet
B. 3 yards
C. 3 inches
D. 3 miles

candle
A. 10 feet
B. 6 inches
C. 6 feet
D. 10 inches

tennis ball
A. 6 yards
B. 6 inches
C. 2 inches
D. 2 yards

popsicle
A. 2 feet
B. 10 inches
C. 10 feet
D. 2 inches

A. 3 inches
B. 10 inches
C. 10 feet
D. 3 feet

marshmallow
A. 2 inches
B. 12 inches
C. 2 yards
D. 12 yards

Convert the following customary length measurements.

$$
\begin{aligned}
& 3 \mathrm{ft} .= \\
& 36 \\
& \text { in. } \\
& 2 \mathrm{mi}=\quad 3,520 \quad \mathrm{yds} . \\
& 5 \mathrm{yds} .= \\
& \mathrm{ft} \text {. } \\
& 6 \mathrm{ft} .= \\
& 4 \mathrm{mi}=\quad 7,040 \quad \mathrm{yds} . \\
& 48 \text { in. }= \\
& 4 \\
& \mathrm{ft} \text {. } \\
& 9 \mathrm{ft} .=\ldots 3 \mathrm{yds} .
\end{aligned}
$$

Examine each item below and determine the appropriate customary measurements.

measuring cup
A. 1 cup
B. 1 fluid ounce
C. 1 gallon
D. 1 quart

A. 1 cup
B. 1 pint
C. 1 gallon
D. 1 quart

kiddie pool
A. 15 pints
B. 15 quarts
C. 15 fluid ounces
D. 15 gallons

fish bowl
A. 1 pint
B. 10 quarts
C. 2 cups
D. 6 pints
BBQ sauce bottle
A. 2 gallons
B. 1 pint
C. 6 cups
D. 2 quarts

glue bottle
A. 1 gallon
B. 2 pints
C. 2 quarts
D. 12 fluid ounces

Convert the following customary capacity measurements.

$$
\begin{aligned}
& 4 \text { pt. = } \\
& 2 \\
& q^{\dagger} . \\
& 16 \mathrm{fl} \text {. oz. = } \\
& \text { c. } \\
& 1 \text { gal. = } \\
& \text { C. } \\
& 5 \text { gal. = } \\
& q \dagger . \\
& 10 \mathrm{qt} .= \\
& \text { pt. } \\
& 4 \mathrm{c} .= \\
& \text { pt. } \\
& 6 \mathrm{q} \dagger .= \\
& 24 \\
& \text { c. } \\
& 3 \text { gal. = } \\
& 24 \\
& \text { pt. }
\end{aligned}
$$

Examine each item below and determine the appropriate customary measurements.

elephant
A. 2 tons
B. 200 pounds
C. 2,000 ounces
D. 20 pounds

book
A. 1 pound
B. 1 ounce
C. 1 ton
D. 5 ounces

picnic basket
A. 3 pounds
B. 1 ton
C. 8 ounces
D. 3 tons

several pieces of popcorn
A. 2 ounces
B. 2 tons
C. 20 pounds
D. 2 pounds

train car
A. 4 tons
B. 10 pounds
C. 4 ounces
D. 400 pounds

video camera
A. 6 tons
B. 6 pounds
C. 6 ounces
D. 1 pound

Convert the following customary weight measurements.

$$
\begin{aligned}
& 4 \text { lbs. }=\quad 64 \text { oz. } \\
& 16 \text { oz. = } \\
& \text { lbs. } \\
& 5 \mathrm{~T} .=\xrightarrow{10,000} \mathrm{lbs} . \\
& 2 \mathrm{~T} .=4,000 \\
& \text { lbs. } \\
& 6 \text { lbs. = } \\
& \text { oz. } \\
& \text { T. } \\
& 10,000 \mathrm{~T} .=20,000,000 \mathrm{lbs} .
\end{aligned}
$$

Use the Input/Output Table to complete the conversion.

Input \quad Output
$1 \mathrm{ft} .=12 \mathrm{in}$.
$4 \mathrm{ft} .=48 \mathrm{in}$.

Input \quad Output
$1 \mathrm{qt}=.4 \mathrm{c}$.
$8 \mathrm{qt}=$.

Input Output
$1 \mathrm{lb} .=16 \mathrm{oz}$.
$6 \mathrm{lb} .=96 \mathrm{oz}$.

Input Output
$1 \mathrm{yd} .=3 \mathrm{ft}$.
$12 \mathrm{yd} .=36 \mathrm{ft}$.

Input \quad Output
$4 \mathrm{qt}=$.1 gal.
$16 \mathrm{qt}=.\frac{4}{4}$ gal.

$$
\begin{gathered}
\text { Input Output } \\
\begin{array}{c}
1 \mathrm{~T} . \\
\hline 5 \mathrm{~T} . \\
\hline
\end{array}=10,000 \mathrm{lb} . \\
\hline
\end{gathered}
$$

Use the Input/Output Table to complete the conversion.

Input \quad Output
16 c.
64 c.

Input Output
$1 \mathrm{yd} .=36 \mathrm{in}$.
$7 \mathrm{yds} .=252 \mathrm{in}$.

Input Output
$1 \mathrm{lb} .=16 \mathrm{oz}$.
$5 \quad \mathrm{lb} .=80 \mathrm{oz}$.

$$
\begin{aligned}
& \text { Input } \text { Output } \\
& \hline 1 \mathrm{mi} .=1,760 \mathrm{yd} . \\
& 8 \mathrm{mi} .=\underline{14,080} \mathrm{yd} .
\end{aligned}
$$

$$
\begin{gathered}
\text { Input } \text { Output } \\
1 \mathrm{~T} .=2,000 \mathrm{lb} \\
3 \mathrm{~T} .=6,000 \mathrm{lb}
\end{gathered}
$$

Use the Input/Output Table to complete the conversion.

Input Output
$36 \mathrm{in} .=1 \mathrm{yd}$.
$288 \mathrm{in} .=8 \mathrm{yd}$.

Input Output
1 gal. $=16 \mathrm{c}$.
$6 \mathrm{gal} .=96 \mathrm{c}$.

Input Output
$1 \mathrm{gal} .=16 \mathrm{c}$.

Examine each item below and determine the appropriate metric measurement.

road between 2 towns
A. 3 kilometers
B. 3 centimeters
C. 3 millimeters
D. 3 meters

bumblebee
A. 5 millimeters
B. 5 centimeters
C. 15 kilometers
D. 15 meters

Convert the following metric length measurements.

4 cm. $=$ \qquad mm .
$2 \mathrm{~m} .=$ \qquad cm .

$$
4 \mathrm{~km} .=\quad 4,000
$$

m.

$$
30 \mathrm{~mm} .=\frac{3}{}
$$ cm .

$600 \mathrm{~cm} .=$ \qquad m.

4 km. $=$ \qquad cm .
$120 \mathrm{~mm} .=$ \qquad cm .

$$
9 \mathrm{~m} .=\quad 9,000
$$ mm .

Examine each item below and determine the appropriate metric measurement.

soup in a spoon
A. 5 liters
B. 100 milliliters
C. 100 liters
D. 5 milliliters

water in a bird bath
A. 6 liters
B. 6 milliliters
C. 100 milliliters
D. 100 liters

Convert the following metric capacity measurements.

4,000 mL. = \qquad L.

3
$10 \mathrm{~L} .=\xrightarrow{10,000}$ mL .
$14 \mathrm{~L} .=$ \qquad mL .
$16,000 \mathrm{~mL} .=$ \qquad L.
$5,000 \mathrm{~mL} .=$ \qquad L.
$3 \mathrm{~L} .=3,000 \mathrm{~mL}$.

Examine each item below and determine the appropriate metric measurement.

A. 7 milligrams
B. 7 grams
C. 7 kilograms
D. 100 grams

paper clip
A. 1 milligram
B. 1 gram
C. 50 milligrams
D. 50 grams

large pumpkin
A. 4 kilograms
B. 4 milligrams
C. 2 grams
D. 2 milligrams

rocket
A. 500,000 grams
B. 500,000 kilograms
C. 50,000 milligrams
D. 50,000 grams

pen
A. 1 gram
B. 1 milligram
C. 15 milligrams
D. 15 grams

apple
A. 20 grams
B. 20 milligrams
C. 2 grams
D. 2 milligrams

Convert the following metric mass measurements.
$4 \mathrm{~kg} .=\quad 4,000$
g.
$3 \mathrm{~g} .=\quad 3,000$
$50 \mathrm{~kg} .=\quad 50,000 \quad \mathrm{~g}$.
$6,000 \mathrm{~g} .=\underline{6,000,000} \mathrm{mg}$.
$10,000 \mathrm{~kg} .=10,000,000 \mathrm{~g}$.

Use the Input/Output Table to complete the conversion.

Input \quad Output
$1 \mathrm{~kg} .=1,000 \mathrm{~g}$.
$4 \mathrm{~kg} .=4,000 \mathrm{~g}$.

Input Output
$1 \mathrm{~kg} .=1,000 \mathrm{~g}$.
$4 \mathrm{~kg} . \quad=4,000 \mathrm{~g}$.

Input Output $3 \mathrm{~L} .=3,000 \mathrm{~mL}$.
 6 L . $=\underline{6,000} \mathrm{~mL}$.

Use the Input/Output Table to complete the conversion.

Input \quad Output
$1 \mathrm{~km} .=1,000 \mathrm{~m}$.
$10 \mathrm{~km} .=10,000 \mathrm{~m}$.

$$
\begin{array}{cc}
\hline \text { Input } & \text { Output } \\
\hline 1 \mathrm{~L} . & =1,000 \mathrm{~mL} . \\
\hline 10 \mathrm{~L} . & =\underline{10,000 \mathrm{~mL}} .
\end{array}
$$

Input
1 Output
$1 \mathrm{~m} . \quad=1,000 \mathrm{~mm}$.
8 m.

Input Output
$1 \mathrm{~m} .=1,000 \mathrm{~mm}$.
$8 \mathrm{~m} .=8,000 \mathrm{~mm}$.

$$
\begin{array}{cc}
\text { Input } & \text { Output } \\
\hline 5 \mathrm{~g} . & =5,000 \mathrm{mg} . \\
\hline 15 \mathrm{~g} . & =\underline{15,000} \mathrm{mg} .
\end{array}
$$

Input	Output
$800 \mathrm{~cm} .=$	8 m.
$1,200 \mathrm{~cm} .=$	m.

Input	Output
14 km .	14,000 m.
6 km .	6,000 m.

Use the Input/Output Table to complete the conversion.

Input	Output
$6 \mathrm{g}=$.	$=6,000 \mathrm{mg}$.
10 g.	$=10,000 \mathrm{mg}$.

Input	Output
6 L.	$=6,000 \mathrm{~mL}$.
$10 \mathrm{LL}=$	$=10,000 \mathrm{~mL}$.

> | Input \quad Output |
| :---: |
| $1 \mathrm{~m} .=1,000 \mathrm{~mm}$. |
| $6 \mathrm{~m} .=\underline{6,000 \mathrm{~mm} .}$ |

Read the word problem below. Identify the times that are given and solve for the missing time. Solve by using both a number line and the standard algorithm.

Bella arrived at the store at $4: 30$ p.m. She shopped for 55 minutes. What time did Bella finish shopping?
$\begin{array}{lll}\text { Start Time: } & \text { End Time: } & \\ \text { 4:30 plapsed Time: } \\ \text { 4: } & \text { 5:25 p.m. } & 0: 55\end{array}$

Number Line:

4:30
5:30
Standard Algorithm:
$4: 30+0: 55=5: 25$

Read the word problem below. Identify the times that are given and solve for the missing time. Solve by using both a number line and the standard algorithm.

Drake raked leaves in the yard for 2 hours and 20 minutes. If he finished raking at 8:05 p.m., what time did Drake start?
Start Time: End Time:
Elapsed Time:
5:45 p.m.
8:05 p.m.
2:20

Number Line:

5:45
7:45
Standard Algorithm:
$8: 05-2: 20=5: 45$

Read the word problem below. Identify the times that are given and solve for the missing time. Solve by using both a number line and the standard algorithm.

Tina worked on her science project for 1 hour and 45 minutes. If she finished working on her project at $5: 35$ p.m., what time did she start working on it?

Start Time: End Time: Elapsed Time: 3:50 p.m. 5:35 p.m. 1:45

Number Line:

3:50
4:50
Standard Algorithm:
$5: 35-1: 45=3: 50$

Read the word problem below. Identify the times that are given and solve for the missing time. Solve by using both a number line and the standard algorithm.

Clint started on a hike at 5:35 a.m. He hiked for 3 hours and 25 minutes. What time did Clint finish his hike?

Start Time: End Time:
Elapsed Time:
5:35 a.m.
9:00 a.m.
3:25

Number Line:

5:35
6:35
7:35
8:35
Standard Algorithm:
$5: 35+3: 25=9: 00$

Read the word problem below. Identify the times that are given and solve for the missing time. Solve by using both a number line and the standard algorithm.

Jaxon started his basketball game at 9:05 a.m. If his game ended at 10:45 a.m., how long was the game?

Start Time: End Time:
Elapsed Time:
9:05 a.m.
10:45 a.m.
1:40

Number Line:

9:05 10:05
Standard Algorithm:
$10: 45-9: 05=1: 40$

Read the word problem below. Identify the times that are given and solve for the missing time. Solve by using both a number line and the standard algorithm.

Hannah worked on her math homework from 6:45-7:50 p.m. How much time did Hannah spend on her homework?
Start Time: End Time:
Elapsed Time:
6:45
7:50
1:05

Number Line:

6:45
7:50

Standard Algorithm:
$7: 50-6: 45=1: 05$

Read the word problem below. Identify the times that are given and solve for the missing time. Solve by using both a number line and the standard algorithm.

Trey went for a run at 10:15 a.m. He finished at 12:10 p.m. How long was Trey on a run?
Start Time: End Time:
Elapsed Time: 10:15 12:10 1:55

Number Line:

Standard Algorithm: $12: 10-10: 15=1: 55$

Read the word problem below. Identify the times that are given and solve for the missing time. Solve by using both a number line and the standard algorithm.

Cara started to cook dinner at 5:10 p.m. She finished cooking at 6:35 p.m. How much time did Cara spend cooking dinner?

Start Time: End Time:
Elapsed Time:
5:10 p.m.
6:35 p.m.
1:25

Number Line:

5:10
6:35

Standard Algorithm:
6:35-5:10 = 1:25

Solve for the perimeter of the figure.

4 mm.

Perimeter: 24 mm .

Grade 4 • Unit 6 • Lesson 15
Perimeter Cards, Set 1
© Reagan Tunstall

Solve for the perimeter of the figure.

Grade 4 • Unit 6 • Lesson 15
Perimeter Cards, Set 1
© Reagan Tunstall

Solve for the perimeter of the figure.

Perimeter: 36 in.

Grade 4 • Unit 6 • Lesson 15
Perimeter Cards, Set 1
© Reagan Tunstall

Solve for the perimeter of the figure.

9 ft .

Perimeter: 34 ft .
Grade 4 • Unit 6 • Lesson 15
Perimeter Cards, Set 1
© Reagan Tunstall

Solve for the perimeter of the figure.

Perimeter: 32 in.
Grade 4 • Unit 6 • Lesson 15
Perimeter Cards, Set 1
© Reagan Tunstall

Solve for the perimeter of the figure.

Perimeter: 34 m.
Grade 4 • Unit 6 • Lesson 15
Perimeter Cards, Set 1
© Reagan Tunstall

Erin has a square tile that has a side length of 9 inches. She also has a rectangular tile that has side lengths of 12 inches and 6 inches. Which tile has a larger perimeter? (Hint: Draw a model to solve.)

Sample answer: They

 Answer: have the same perimeter.Grade 4 • Unit 6 • Lesson 15
Perimeter Cards, Set 1
© Reagan Tunstall

Luke has a square garden. One side of the garden is 15 feet. What is the perimeter of Luke's garden? (Hint: Draw a model.)

Answer: 60 feet

Grade 4 • Unit 6 • Lesson 15
Perimeter Cards, Set 1
© Reagan Tunstall

Solve for the area of the figure below.

Area: 55 sq. ft.

Grade 4 • Unit 6 • Lesson 16
Area Cards, Set 1
© Reagan Tunstall

Solve for the area of the figure below.

Grade 4 • Unit 6 • Lesson 16
Area Cards, Set 1
© Reagan Tunstall

Solve for the area of the figure below.

Area: 16 sq. in.

Grade 4 • Unit 6 • Lesson 16
Area Cards, Set 1
© Reagan Tunstall

Solve for the area of the figure below.

Area: 90 sq. in.

Grade 4 • Unit 6 • Lesson 16
Area Cards, Set 1
© Reagan Tunstall

Solve for the area of the figure below.

Area: 37 sq. mm.

Grade 4 • Unit 6 • Lesson 16
Area Cards, Set 1
© Reagan Tunstall

Solve for the area of the figure below.

Grade 4 • Unit 6 • Lesson 16
Area Cards, Set 1
© Reagan Tunstall

Darren and James compared the sizes of their gardens. Which of their gardens has a greater area?

Sample answer: Their gardens are
Answer: the same size.
Grade 4 • Unit 6 • Lesson 16
Area Cards, Set 1
© Reagan Tunstall

Terri has a square rug that measures 10 feet on one side and Daphne has a rectangular rug that measures 6 feet by 11 feet. Whose rug covers a greater area of space? (Hint: Draw a model to solve.)

Answer: Terri

Grade 4 • Unit 6 • Lesson 16
Area Cards, Set 1
© Reagan Tunstall

Megan drew a square whose sides measured 17 inches. Henry drew a rectangle whose sides measured 13 inches by 7 inches. Whose figure had a smaller perimeter? How much smaller was the perimeter? (Hint: Draw a model to solve.)
A. Megan; 28 in.
B. Henry; 28 in .
C. Megan; 18 in.
D. Henry; 18 in.

Grade 4 • Unit 6 • Lesson 17 Measurement Story Cards, Set 1
© Reagan Tunstall

Whitney and Clark compare the sizes of their rugs. Whose rug has a larger area? How much larger is the area of the rug?

Grade 4 • Unit 6 • Lesson 17 Measurement Story Cards, Set 1
© Reagan Tunstall

Which shape has the greater area? Which has the greater perimeter?

$$
2 \mathrm{~mm} . \begin{gathered}
14 \mathrm{~mm} . \\
\hline \text { Shape A } \\
\hline
\end{gathered}
$$

17 mm .

Shape B

Greater Area: Shape B

Greater Perimeter: Shape B
Grade 4 • Unit 6 • Lesson 17 Measurement Story Cards, Set 1
© Reagan Tunstall

Blanca arrived at school at 6:45 a.m. She stayed at school until 4:20 p.m. How long was Blanca at school?
A. 9 hours and 5 minutes
B. 9 hours and 20 minutes
C. 9 hours and 35 minutes
D. 9 hours and 50 minutes

Grade 4 • Unit 6 • Lesson 17 Measurement Story Cards, Set 1
© Reagan Tunstall

Jackie started running errands at 8:00 a.m. She spent 50 minutes in the grocery store and then another 45 minutes in the craft store. What time did Jackie finish with her errands?
A. 9:05 a.m.
B. 9:15 a.m.
C. 9:25 a.m.
D. 9:35 a.m.

Grade 4 • Unit 6 • Lesson 17 Measurement Story Cards, Set 1
© Reagan Tunstall

Kendall had dance practice for 2 hours and 35 minutes. If she finished class at 9:30 p.m., what time did class start?

> A. $6: 55$ p.m.
> B. $7: 15$ p.m.
> C. $7: 25$ p.m.
> D. $7: 35$ p.m.

Grade 4 • Unit 6 • Lesson 17 Measurement Story Cards, Set 1
© Reagan Tunstall

Xavier has 4 gallons of milk. How many cups are in his 4 gallons of milk?

Answer:
 64 cups

Grade 4 • Unit 6 • Lesson 17 Measurement Story Cards, Set 1
© Reagan Tunstall

Harry started watching a movie at 9:55 p.m. The movie was 2 hours and 10 minutes long. What time did the movie end?

12:05 a.m.

Examine the image below and determine the most appropriate measurement.

A. 10 feet

B. 10 yards
C. 2 feet
D. 2 yards

Complete the conversion chart below.

$$
\begin{aligned}
& \text { input output } \\
& \hline 32 \mathrm{c} .=2 \mathrm{gal} . \\
& \hline 80 \mathrm{c} .=\frac{5}{2} \text { gal. } \\
& 144 \mathrm{c} .=\frac{9}{2} \text { gal. }
\end{aligned}
$$

Vicky has a square tile that has a side length of 12 inches. She also has a rectangular tile that has side lengths of 14 inches and 8 inches. Which tile has a larger area? (Hint: Draw a model to solve.)

The square tile

Becca started reading her book at 6:45 p.m. She read until 9:30 p.m. How long did Becca read her book?

2 hours 45 minutes

Examine the image below and determine the most appropriate measurement.

full pitcher of lemonade
A. 2 liters
B. 100 milliliters
C. 100 liters
D. 2 milliliters

Find the area of the figure below.

10 ft .

Complete the conversion chart below.

It takes Jacob 2 hours and 45 minutes to get to his grandmother's house. If he needs to be there by 5:30 p.m., what time does Jacob need to leave?

2:45 p.m.

Find the area and perimeter of the shape below.

14 in.

Complete the conversion chart below.

Examine the image below and

 determine the most appropriate measurement.
A. 5 pounds
B. 5 ounces
C. 1 pound
D. 1 ounce

