
P.O. Box $88259 \cdot$ Tukwila, WA 98138 • 1-800-497-0552 Made in Taiwan • © Copyright $2021 \cdot$ www.wilmarcorp.com

ENGLISH FASTENERS (in Foot Pounds)*								
	MATERIAL T SIZE	$\begin{aligned} & \text { SAE } \\ & \text { Sald } \\ & \text { (Mild } \\ & \text { Steel) } \end{aligned}$	SAE 5	SAE 8	$\begin{aligned} & \text { SOCKE } \\ & \text { HEARCAP } \\ & \text { SCREWS } \end{aligned}$		BRASS	$\begin{aligned} & \text { Stainless } \\ & \text { AISI } \\ & \text { TYPE } 303 \end{aligned}$
1/4-20		6	11	12	13		5	5
	/4-28	7	13	15	16		6	7
5/16-18		13	21	25	27		8	9
5/16-24		14	23	30	33		9	10
3/8-16		23	38	50	52		15	17
3/8-24		26	40	60	60		16	18
7/16-14		37	55	85	86		23	25
7/16-20		41	60	95	95		25	28
1/2-13		57	85	125	130		32	37
1/2-20		64	95	140	145		34	40
9/16-12		80	125	175	180		44	50
9/16-18		91	140	195	210		48	54
5/8-11		111	175	245	255		68	75
5/8-18		128	210	270	290		73	80
3/4-10		180	300	425	410		104	115
3/4-16		200	330	460	445		115	125
$\begin{aligned} & 7 / 8-9 \\ & 7 / 8-14 \end{aligned}$		275	450	660	580		155	170
		300	490	700	615		170	185
$\begin{gathered} \hline 7 / 8-14 \\ \hline 1 "-8 \\ \hline \end{gathered}$		415	680	990	830		235	260
1"-14		435	715	1050	880		250	270
GENERAL TORQUE SPECIFICATION CHART FOR METRIC FASTENERS (in Newton Meters)*								
		4.6	4.8	5.8	8.8	9.8	810.9	12.9
5 6 6	${ }_{\text {N }}$ NCH	3	4	5	7	8	11	12
	. 236	5	6	8	12.5	14	17	20
6.3	. 248	5.5	8	9.5	14	16	21	24
	. 315	12	16	20	30	34	44	50
10	. 394	23	32	40	60	70	85	100
	. 472	40	56	70	103	120	(150	180
121416	. 551	65	90	110	167	190	0240	280
	. 630	100	140	170	270	290	0380	440
16 18 20 18	18 .709 20 .787	137	177	225	350		480	580
		200	-	330	520	-	740	860

as accurate limits. Indeterminant factors (surface finish, type of plating and lubrication in specific applications preclude the publication of accurate values for universal use. Manufacturers of various types of equipment usually provide specific tightening instructions which should be followed. DO NOT USE the above values for gasketed joints or joints of soft materials. DO NOT USE
your torque wrench for values greater than its maximum scal yoading.

CARE AND MAINTENANCE

A torque wrench is a precision instrument and should be handled and stored with care. Do not throw it around, hammer with it, or use it as a pry bar.
2. The wrench is lubricated for life and should not be oiled. The only exception is the ratchet head which may be lubricated as
3. The plastic grip is not affected by petroleum products but may be damaged by some industrial solvents. Clean with a clean IMMERSE THE WRENCH OR ANY PORTION OF IT IN ANY LIQUID!
4. This is a precision measuring instrument. Calibration and servicing must be done regularly and is the owner's RESPONSIBILITY.

TORQUE UNIT CONVERSION

$\underbrace{\substack{\text { NUBER OF }}}_{\substack{\text { MULTIPLY } \\ \text { TO } \\ \text { OBTAIN }}}$	$\begin{aligned} & \text { Inch } \\ & \text { Ounces } \end{aligned}$	Inch Pounds	Foot Pounds	Newton Meters
Inch Ounces	1	16	192	141.6
Inch Pounds	. $0625{ }^{1}$	1	12	8.851
Foot Pounds	. 005208	.08333 ${ }^{2}$	1	. 7376
Newton- Meters	. 007061	. 1130	1.356	1

or divide by 16 or divide by 12

CERTIFICATION

This torque wrench is certified to have been calibrated prior to shipment to the accuracy off $\pm 4 \%$ in the right hand direction, and $\pm 6 \%$ in the left hand direction on readings 20% to 100% of capacity. On readings below 20% of capacity, the accuracy is \pm two minor scale increments.

1. Hold handle and twist collar to the right to "UNLOCK". 2. Turn the handle clockwise or counter-clockwise (right or left) to set the desired torque.

EXAMPLES OF TORQUE SETTINGS
To set torque to 83 ft.lbs. turn the handle clockwise until the edge of the minor scale is even with the line marking "80" on the major shown in fig. 1 below. Then, continue turning the handle clockwise until the " $3 \mathrm{ft.lb}$." mark is centered as shown in fig. 2 .

Various models and capacities of wrenches are illustrated. Though they might be different from your particular wrench, the principle of obtaining scale reading is the same.
By necessity, metric scales are not calibrated in even numbers. Consequently, when using Metric scales, set the wrench at a reading closest to the desired torque.

! WARNING

1. Do not set torque below lowest scale
2. Do not apply more torque than max. scale
3. Do not continue applying torque when preset torque has been reached (audible "Click")

! CAUTION

1. Threads on bolts, nuts and other mating components should be Clean and smooth. A lubricant applied to the threads and under
heads of bolts will produce more accurate and consistent results.
2. Never torque a fastener that is already tightened. Loosen it first, then re-torque to the desired value. The same applies to fasteners that are over-torqued
3. When tightening many fasteners holding one component (engine head, pipe flanges, etc.) follow manufacturer's recommended procedures. If such procedures are not available, torque in a criss-cross manner first $60-70 \%$ of the desired torque, then the final torque
DO NOT apply more torque than the rated capacity of the torque
wrench. Do not use it as a nut-breaker!!

EXTENSIONS

When attaching an adaptor, the torque applied by the extension to he fastener is always more than the torque setting on the wrench Follow the formulas below to correct torque settings.
A - Torque applied by extension to the fastener

- Torque Set on the wrench
- Lever lengh from center of ratchet head drive to center of - Extension length (from center Ratchet head drive to center of socket or fastener)

EXAMPLE
you desire 50 ft . lbs. at the end of the adaptor (A) then the torque
tting on the wrench (R) is calculated as follows:

(The formula above is applicable for in-line adapter only)

Any length of extension can be used. When the adapter is attached perpendicular to the axis of the wrench the torque setting on the wrench is equal to the torque on the fastene
NOTE:
. Regular (concentric) socket extensions which extend directly calibration of the torque wrench.
2. A handle extension (a piece of pipe extending the handles will result in he adjusting mechanism. While applying torque, the wrench should be held ONLY BY THE GRIP. At high torque readings, if both hands are necessary to apply enough pressure to operate the wrench, first hand, never on the wrench body.

