

Objective

Estimate irrational square roots.

Common Core State Standards

8.NS. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.

The Number System

Irrational Square Roots

The square root, r, of a number, x, is the number such that $r^{2}=x$. This also can be written as $\sqrt{x}=r$. In previous work, students have found the principal square roots of numbers. Students need to understand that not all square roots are rational numbers. When a square root is a nonterminating decimal with no repeating pattern, it is irrational. Irrational square roots must be estimated.

Perform the Try It! activity on the next page.

Talk About lt

Discuss the Try It! activity.

- Ask: What is the square root of 2? Why is $\sqrt{2}$ irrational? Why must $\sqrt{2}$ be estimated?
■ Ask: How can $\sqrt{2}$ be estimated? Is $\sqrt{2}$ closer to 1 or 2? How did you make the estimate more accurate?

■ Ask: What is the best range for the estimate of $\sqrt{2}$ on the number line? Have students show the 1.414-1.415 interval. Ask: Can you ever find the exact location? Emphasize that the exact location is impossible to find because $\sqrt{2}$ is irrational.

Solve It

Reread the problem with students. Have students draw the square with the diagonal and label it $\sqrt{2}$. Then have them draw the section of the number line with the best range for the estimate indicated.

More Ideas

For other ways to teach about estimating irrational square roots-

- Have students make a table to find the integers between which the square root of 2 falls using tenths, hundredths, and thousandths increments.
- Have students use their calculators and the Folding Number Line to find the best range for the estimate of $\sqrt{3}, \sqrt{5}$, and $\sqrt{7}$.

Formative Assessment

Have students try the following problem.
A picture frame has a square opening that measures 3 inches on each side. The diagonal length is $\sqrt{18}$ inches. Which is the best estimate of this length?
A. between 4 and 5, but closer to 5
B. between 4.1 and 4.2, but closer to 4.2
C. between 4.23 and 4.24 , but closer to 4.24
D. between 4.24 and 4.25 , but closer to 4.24

Try It !

15 minutes | Groups of 4
Here is a problem about estimating irrational square roots.

Carol drew a square with side lengths of 1 inch. Then she drew the diagonal and wanted to know its length. She calculated that it is $\sqrt{2}$. What is the approximate length of the diagonal?

Introduce the problem. Then have students do the activity to solve the problem. Distribute the materials.

1. Ask: Between what two whole numbers is $\sqrt{2}$ found? Note that 2 is between the two perfect squares 1 and 4 so $\sqrt{2}$ is between $\sqrt{1}$ and $\sqrt{4}$, or between 1 and 2. Ask: Which number line should you use to locate $\sqrt{2}$? Elicit that the $1-2$ number line is the one they should use.

2. Ask: How can we make our estimate more accurate? Which hundredths interval should we locate? Have students find the 1.41-1.42 interval on the line. Ask: On which thousandths interval is $\sqrt{2}$ located? Students should find the 1.414-1.415 interval.

Materials

- Folding Number Line
- Calculator
- paper (1 sheet per group)
- pencils (1 per group)

2. Have students use their calculators to find $\sqrt{2}$. Explain that a nonterminating number such as this, with no repeating pattern, is an irrational number. Ask: How close to 1 is $\sqrt{2}$? Have students look at the tenths place in the number to see where $\sqrt{2}$ would be located on the Folding Number Line. Have students find the 1.4-1.5 interval on the line.

A Look Out!

Students sometimes divide by 2 to find the square root. Reinforce the definition of square root, explaining that dividing by 2 is not the same.

Use the Folding Number Line to estimate the square root. Fill in the blanks.

1. $\sqrt{15}$
(Check students' work.)

$\sqrt{15}$ is between the whole numbers $\quad 3 \quad$ and $\quad 4$.
A better estimate is between \qquad 3.8 and 3.9

A better estimate is between \qquad and \qquad

A better estimate is between \qquad and \qquad

Using the Folding Number Line, estimate the square root. Fill in the blanks.
2. $\sqrt{38}$
$\sqrt{38}$ is between the whole numbers $\quad 6 \quad$ and $\quad 7$.
A better estimate is between \qquad 6.1 and 6.2

A better estimate is between \qquad and 6.17

A better estimate is between \qquad 6.164 and 6.165

Give the tenths interval on which the irrational number falls.
3. $\sqrt{75} \quad 8.6-8.7$
4. $\sqrt{56} \quad 7.4-7.5$
5. $\sqrt{117} \quad 10.8-10.9$
6. $\sqrt{48}$ 6.9-7.0

Answer Key

Challenge! Using the Folding Number Line, show $\sqrt{17}$ and explain why increasing the number of decimal places in the endpoints of a range makes the estimate of an irrational square root more accurate.

Challenge: (Sample) $\sqrt{17}=4.123$. Increasing the number of decimal places for the endpoints of a range makes the range smaller. It limits the possibilities for the square root to that smaller range, which means the estimate is more accurate.
\qquad

Use the Folding Number Line to estimate the square root. Fill in the blanks.

1. $\sqrt{15}$

3.8	$\stackrel{\sim}{\sim}$	~0	¢	$\underset{\substack{\omega\\}}{ }$	$\begin{array}{\|c} w \\ u \\ 0 \end{array}$	$\begin{aligned} & \text { un } \\ & \hline 0 \end{aligned}$	${ }^{\omega}$	ω_{∞}^{ω}	wo	3.9

$\sqrt{15}$ is between the whole numbers \qquad and \qquad .

A better estimate is between \qquad and \qquad .

A better estimate is between \qquad and \qquad .

A better estimate is between \qquad and \qquad .

Using the Folding Number Line, estimate the square root. Fill in the blanks.
2. $\sqrt{38}$
$\sqrt{38}$ is between the whole numbers \qquad and \qquad .

A better estimate is between \qquad and \qquad .

A better estimate is between \qquad and \qquad .

A better estimate is between \qquad and \qquad .

Give the tenths interval on which the irrational number falls.
3. $\sqrt{75}$ \qquad 4. $\sqrt{56}$ \qquad
5. $\sqrt{117}$ \qquad 6. $\sqrt{48}$ \qquad

Name

Challenge! Using the Folding Number Line, show $\sqrt{17}$ and explain why increasing the number of decimal places in the endpoints of a range makes the estimate of an irrational square root more accurate.
\qquad

