Objective

Rotate a plane figure a given number of degrees around a fixed point.

Common Core State Standards

- 8.G. 3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.

Geometry

Rotations (Turns)

A rotation is a transformation that moves every point of a figure around a fixed point (usually a vertex or the origin of the coordinate plane). A rotation creates a figure that is congruent to the original figure. A rotation preserves distance from and orientation to the fixed point.

Try lit! Perform the Try It! activity on the next page.

Talk About It

Discuss the Try It! activity.

- Ask: Does the rotated (turned) figure look the same as the original figure (pre-image)? How is it like the original? How is it different?
- Ask: What does it mean for a figure to maintain its orientation as it turns?
- Ask: How many degrees did you rotate the trapezoid in order to bring it back to the starting point?
- Ask: What would happen if you rotated the trapezoid 60° each time? How many trapezoids would there be in the circle you generated?

Solve It

Reread the problem with students. Have them write a brief description (with simple sketches) of how a rotation does not affect an object's distance from and orientation to a fixed point.

More Ideas

For other ways to teach about rotations-

- Have the students rotate other Pattern Blocks on graph paper and notice how the figures maintain their orientation and distance regarding a center point.
- Have students practice rotations of multiples of 90° using the XY Coordinate Pegboard. Have students plot a shape and then re-peg it using clockwise and counterclockwise rotations.
- A Geoboard can be used similarly to the XY Coordinate Pegboard.

Formative Assessment

Have students try the following problem.
Which of the following diagrams shows a 90° rotation?
A.

B.

C.

D.

TIY |t. 30 minutes | Pairs

Here is a problem about rotations (turns).

Jared is setting up stations for a relay game. The eight stations are to be evenly spaced from each other and set 10 feet from a center peg. The stations are trapezoids. Their smaller bases should face the peg. He has been asked to make a diagram showing where each station should be. What will his diagram look like?

Introduce the problem. Then have students do the activity to solve the problem. Distribute the materials.

1. Have students put a piece of tape over the small base of each trapezoid. Then have them find and mark the middle of the small base.

2. Have students center a trapezoid over the point $(10,0)$ on the x-axis. Ask: What is the distance from the middle of the circle to the marked point on the trapezoid? (10 units) Have them put the remaining blocks in place where the lines intersect the circle.

Materials

- Pattern Blocks (8 trapezoids)
- $\frac{1}{4}$-Inch Grid Paper
- tape
- drawing compass (BLM 6; 1 per pair)
- protractor
- marker

2. Have students draw the x - and y-axes centered on the graph paper. Ask: How many degrees must Jared rotate each station so that he can place them all evenly around the peg? Next, have them draw lines that are at a 45° angle to the axes. Then have them draw a circle with a radius of 10 units from the origin.

3. Finally, have students outline the trapezoids. They should convert the markings to feet using a scale of 2.5 inches: 10 feet and label the length of each of the radii on the diagram.

Use Pattern Blocks and grid paper to model the rotations shown below.
The triangle is rotated about the origin. Fill in the blanks. Find the degrees of rotation.

(Check students' work.)

1.

One complete rotation is \qquad
The triangle is rotated \qquad times.

The angle of rotation is \qquad 60°

Using Pattern Blocks and grid paper, model the rotation of a square 4 times about the origin. Sketch the model.
2.

> (Check students' models.)

What is the angle of rotation when a square is rotated about the origin 4 times? \qquad

Answer Key

Challenge! Why do you use 360° as the dividend when you are finding an angle of rotation?

Challenge: (Sample) 360° is one complete rotation around a circle.
\qquad

Use Pattern Blocks and grid paper to model the rotations shown below.
The triangle is rotated about the origin. Fill in the blanks. Find the degrees of rotation.
1.

One complete rotation is \qquad .

The triangle is rotated \qquad times.

The angle of rotation is \qquad .

Using Pattern Blocks and grid paper, model the rotation of a square 4 times about the origin. Sketch the model.
2.

What is the angle of rotation when a square is rotated about the origin 4 times? \qquad
Identify the angle of rotation about the origin for each number of rotations.
3. 5 rotations
\qquad
6. 10 rotations
7. 9 rotations
4. 12 rotations
\qquad
\qquad
8. 15 rotations
5. 3 rotations

Name

Challenge! Why do you use 360° as the dividend when you are finding an angle of rotation?
\qquad

