\qquad
Use Fraction Circles to model each fraction. Write each fraction.
1.

2.

3.

Using Fraction Circles, model each fraction. Shade each circle to represent the fraction. Write the fraction.
4. 5 sections of $\frac{1}{6}$

5. 2 sections of $\frac{1}{4}$

6. 3 sections of $\frac{1}{8}$

Draw a model for each fraction.

7. $\frac{5}{8}$
8. $\frac{2}{3}$
9. $\frac{8}{12}$

Name

Challenge! Describe how you choose which set of Fraction Circles to use to model $\frac{5}{6}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Use Fraction Tower Cubes and a number line to build each model. Circle the first part of the whole. Write the fraction.

1. Jason breaks a stick into 3 equal pieces.

2. Bailie divides a bar of clay into 6 equal pieces.

Use Fraction Tower Cubes and a number line to model each fraction. Draw the model. Color the first part of the whole. Mark the fraction on the number line. Write the fraction.
3. A string is cut into 4 equal pieces.

4. A banana is divided into 2 equal pieces.

Mark and label the fraction on the number line.
5. $\frac{1}{8}$

Name

Challenge! Using Fraction Tower Cubes, draw a number line and show a whole divided into 10 equal parts. Color one piece of the whole. Write the fraction.
\qquad
\qquad
\qquad
\qquad
Use Fraction Towers and a number line to build each model. Mark and label the number line. Circle the fraction on the number line.

1. $\frac{5}{8}$

2. $\frac{2}{6}$

Use Fraction Tower Cubes and a number line to model each fraction. Draw the model. Mark and label the number line. Circle the fraction on the number line.
3. $\frac{4}{5}$

4. $\frac{3}{4}$

Mark and label the number line. Circle the fraction.
5. $\frac{7}{10}$

Name \qquad

Challenge! Using Fraction Tower Cubes, draw a number line and show a whole divided into 8 equal parts. Label the number line. Color $\frac{7}{8}$ of the whole. Write the fraction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Use Fraction Circles to model each fraction. Write equivalent fractions for the shaded parts. Write equivalent fractions for the unshaded parts.
1.

\qquad
\qquad
\qquad
2.

\qquad
\qquad
\qquad $=$ \qquad

Using Fraction Circles, model the fraction. Then sketch a model or an equivalent fraction. Write the equivalent fraction.
3. $\frac{1}{2}=\frac{}{4}$

Write an equivalent fraction for each fraction.
4. $\frac{2}{3}=\frac{}{6}$
5. $\frac{3}{4}=\frac{}{8}$
6. $\frac{2}{8}=\frac{}{4}$
7. $\frac{2}{4}=\frac{}{2}$
8. $\frac{2}{6}=\frac{}{12}$
9. $\frac{6}{8}=\frac{}{12}$

Name

Challenge! Name another fraction equivalent to the fractions in Problem 9. Explain how you know that it is equivalent.
\qquad

Use Fraction Tower Cubes and the Fraction Number Line to build the model. Write the equivalent fraction.

1. How many eighths are in $\frac{1}{2}$?

2. How many sixths are in $\frac{1}{3}$?

\qquad

Look at each number line. Color and mark an equivalent fraction. Write the fractions.
3.

\qquad $=$ \qquad
4.

\qquad $=$ \qquad
5.

\qquad
6.

\qquad $=$ \qquad

Name

Challenge! Use Fraction Tower Cubes to draw and label two number lines. Then color and write two fractions equal to $\frac{1}{2}$.
$\frac{1}{2}=$ \qquad $=$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Use Fraction Tower Cubes and sketch paper to model each fraction. Then write the fraction.

1. Victor has 8 logs for the fireplace.

Fraction: \qquad
3. Jabar has 6 pencils for school.

Fraction: \qquad
Show where the fraction belongs on the number line.
4. Amber had $\frac{5}{1}$ bananas in a basket.

5. Kahlil used $\frac{2}{2}$ of the ribbon to wrap gifts.

6. Ethan used $\frac{3}{3}$ of the string.

7. Cali used $\frac{3}{1}$ boxes to pack gifts.

Name \qquad

Challenge! Mark had a box of 4 pizzas for his party. Each pizza was cut into 8 pieces. After the party, all of the pizza was gone. His mom said $\frac{32}{32}$ of the pizza was eaten. Is she right? Use drawings to show if she is right or wrong. Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Use Fraction Circles to model each fraction. Compare the fractions. Write <, >, or = to compare.

1. $\frac{3}{8} \bigcirc \frac{7}{8}$
2. $\frac{1}{3} \bigcirc \frac{1}{2}$

Using Fraction Circles, model the fraction. Draw the model. Build and draw a second fraction that makes the number sentence true. Complete the number sentence.
3.

$\frac{3}{4}<$ \qquad
4.

$$
\frac{4}{6}>
$$

Write <, >, or = in each circle to compare.
5. $\frac{1}{2} \bigcirc \frac{1}{4}$
6. $\frac{2}{4} \bigcirc \frac{2}{6}$
7. $\frac{3}{5} \bigcirc \frac{3}{4}$
8. $\frac{5}{8} \bigcirc \frac{6}{8}$
9. $\frac{2}{3} \bigcirc \frac{2}{6}$
10. $\frac{5}{10} \bigcirc \frac{5}{6}$

Name \qquad

Challenge! When comparing fractions, why is it important that you compare fractions of the same whole? Is $\frac{3}{4}$ of an orange greater than $\frac{1}{2}$ of a watermelon?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

