\qquad
Use a Geoboard to model each parallelogram. Find its area.
1.

square units
2.

\qquad square units

Using a Geoboard, model a parallelogram with the given area. Sketch the shape.
3. 16 units 2

4. 12 units 2

Find the area of each parallelogram.
5.
9

7.

5
6.

8.

Name

Challenge! How is finding the area of a parallelogram different from finding the area of a rectangle? How is it similar? Draw a picture to help.
\qquad
Use AngLegs ${ }^{\circledR}$ and grid paper to model the shapes shown. Find the perimeter of each shape. Find the area of each shape.
1.

Perimeter of rectangle \qquad units

Area of rectangle \qquad sq units

Perimeter of parallelogram \qquad units Area of parallelogram \qquad sq units

Using AngLegs and grid paper, model two shapes that have the given perimeter, but different areas. Name the area of each shape.
2. 50 units

Figure 1
Figure 2

Area of Figure 1 \qquad Area of Figure 2 \qquad

Find the perimeter and area of each figure.
3.

Figure 2

Figure 3

4.

Figure 2

Figure 3

Name

Challenge! How can a rectangle with side lengths of 6 and 10 have a different area than a parallelogram with side lengths of 6 and 10? What do you know about their perimeters? Draw a picture to help.
\qquad

Use a Geoboard to model each triangle. Find its area.

1.

\qquad square units
2.

\qquad square units

Using a Geoboard, model each triangle. Sketch the model. Find its area.
3. base: 4 units, height: 2 units

\qquad square units
4. base: 4 units, height: 4 units

\qquad square units

Find the area of each triangle.
5.

7
6.

7.

Name

Challenge! Explain why the formula for the area of a triangle includes the fraction $\frac{1}{2}$. Draw a picture.
\qquad

Use an XY Coordinate Pegboard to model the trapezoids. Divide each trapezoid into two triangles. Find the area of each trapezoid.
1.

Area of triangle \qquad sq. units

Area of triangle \qquad sq. units

Area of trapezoid \qquad sq. units
2.

Area of triangle \qquad sq. units

Area of triangle \qquad sq. units

Area of trapezoid \qquad sq. units

Using an XY Coordinate Pegboard, model a trapezoid with the given area. Sketch the model. Answer the questions.
3. 64 square units

What is the length of the short base? \qquad
What is the length of the long base? \qquad
What is the height? \qquad

Find the area of each trapezoid.
4.

5. bases, 4 in. and 6 in. height, 5 in.
6. bases, 9 cm and 10 cm height, 6 cm

Name

Challenge! How is finding the area of a trapezoid related to finding the area of two triangles, each with a base length equal to a base length of the trapezoid. Draw a picture to help.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Use AngLegs ${ }^{\circledR}$ and graph paper to model each shape in a coordinate plane. Part of the shape is shown. Name the coordinates of the vertices that complete the shape.

1. rectangle with vertices at $(2,1)$ and $(2,5)$

The other vertices are at
2. isosceles trapezoid with short base 3 units, long base 11 units

The vertices of the long base are
\qquad . \qquad .

Using AngLegs, model each shape. Sketch the model. Name the vertices.

3. square in the second quadrant that has sides 5 units long

The vertices of the square are
4. rectangle in the third and fourth quadrants, 7 units by 4 units

The vertices of the rectangle are
\qquad .

Name

Challenge! If a rectangle has one vertex at $(4,4)$ and its opposite vertex is at $(-5,-5)$, in what quadrants is the rectangle? Draw a picture to help.
\qquad
Use Relational GeoSolids to identify the solid for each net that is shown. Name the solid.

2.

Use Relational GeoSolids to help you draw a net for each solid. Sketch the net.
3. cube
4. triangular prism
5. rectangular prism
6. hexagonal prism

Name

Challenge! How many different nets can you draw for a cube?
\qquad
\qquad
Use Snap Cubes to build the rectangular solid. Find the surface area.
1.

area of top surface \qquad area of bottom surface \qquad
area of right side surface \qquad
area of left side surface \qquad
area of front surface \qquad
area of back surface \qquad
Total surface area \qquad

Using Snap Cubes, build the solid with the given dimensions. Sketch the model. Find the surface area.
2. length: 5 units, width: 4 units, and height: 5 units

Find the surface area of each rectangular solid.
3.

4.

6. length: 9 units width: 2 units height: 2 units

Name

Challenge! How many faces does a rectangular solid have? How are these faces used to find the surface area of the solid?
\qquad

