Tell whether the graph shows the system of equations.

\[x + 2y = 2 \]
\[x - y = 2 \]

You can find the \(x\)- and \(y\)-intercepts for \(x + 2y = 2\).
Substitute \(y = 0\):
\[x + 2(0) = 2 \]
x = 2, so the \(x\)-intercept is (2, 0).
Substitute \(x = 0\):
\[0 + 2y = 2 \]
y = 1, so the \(y\)-intercept is (0, 1).
These points are on one of the lines in the graph.

You can find the \(x\)- and \(y\)-intercepts for \(x - y = 2\).
Substitute \(y = 0\):
\[x - 0 = 2 \]
x = 2, so the \(x\)-intercept is (2, 0).
Substitute \(x = 0\):
\[0 - y = 2 \]
y = -2, so the \(y\)-intercept is (0, -2).
These points are on the other line.
So the graph shows the system of equations.

For 1–12, look at the system of equations and match to a graph.

1. \[y = -8x + 3 \]
 \[y = -x - 4 \]

2. \[4x + 2y = 2 \]
 \[2x - y = 7 \]

3. \[2y = 2x \]
 \[6y = 5x \]

4. \[y = 2x + 2 \]
 \[y = x - 2 \]

5. \[y = 3x + 3 \]
 \[x = y + 3 \]

6. \[8y - x = 9 \]
 \[4y = 3x + 2 \]

7. \[x = 4 + y \]
 \[4y = x - 1 \]

8. \[x + 2y = 0 \]
 \[x + 6y = 0 \]

9. \[2y = 5x - 5 \]
 \[2x = -5y + 2 \]

10. \[x - 6y = 8 \]
 \[x + 6y = 8 \]

11. \[x = 3 + y \]
 \[2y = x - 1 \]

12. \[2x = y + 2 \]
 \[2y = 2x + 2 \]
Objective: Identify the graph of a system of equations.