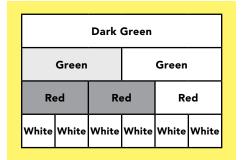
Four number cards are shown below.

2

9

Use two of the cards to

- a. make the smallest fraction.
- **b.** make the next smallest fraction.


ANSWER: a. $\frac{1}{9}$; b. $\frac{1}{7}$

COMMENTS & EXTENSIONS: Challenge students to make all possible fractions using the cards, and write the fractions in order of size.

 $\mathcal{S}_{i_{i_{1}}}^{i_{1}}$ Use two of the cards to make the largest fraction. $\left[\frac{9}{1}\right]$

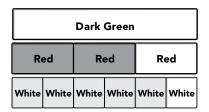
- Use Cuisenaire Rods.
- Build a model for the fractions.
- Add rods to make a common denominator, if necessary.
- Draw and color your model.
- Rewrite the fractions using a common denominator.
- Write >, <, or = in the circles.
- For problems 5–7, compare without building models.

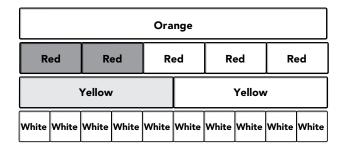
Brown									
Red		Re	ed	Re	∍d	Red			
White									

6. $\frac{2}{3} = \frac{4}{6}$

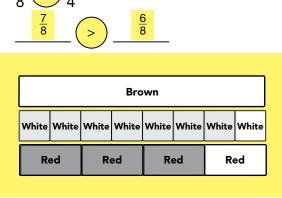
 $\frac{1}{2}$? $\frac{1}{3}$ **Dark Green** Green Green Red Red Red White White White White White

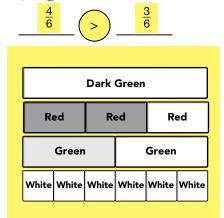
Using a common denominator: $\frac{3}{6} > \frac{2}{6}$




Orange									
Red		Re	Red R		ed Re		ed Re		ed
Yellow				Yellow					
White	White	White	White	White	White	White	White	White	White

Blue									
Green				Green		Green			
White									




Use Cuisenaire Rods to build the model. Rename the fractions to make a common denominator. Compare the fractions. Write >, <, or = in the circles.

Use Cuisenaire Rods to model the fractions. Add rods to make a common denominator, if necessary. Draw and color your model. Rewrite the fractions using a common denominator. Write >, <, or = in the circles.

Compare the fractions. Write >, <, or =.

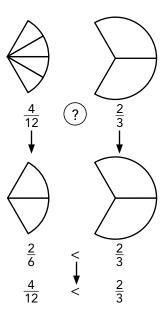
5. $\frac{1}{2} = \frac{5}{10}$

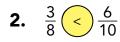
6. $\frac{3}{4} > \frac{2}{3}$

7. $\frac{7}{12} < \frac{4}{6}$

Suppose you have the following cards:

Use two cards to make a fraction that is

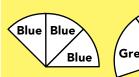

- **a.** greater than four-fifths.
- **b.** less than one-fifth.
- c. more than two.

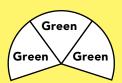

d. closest to one-sixth.

ANSWER: a. Possible answers: $\frac{2}{1}$, $\frac{3}{1}$, $\frac{4}{1}$, $\frac{5}{1}$, $\frac{3}{2}$, $\frac{4}{2}$, $\frac{5}{2}$, $\frac{4}{3}$, $\frac{5}{3}$, and $\frac{5}{4}$; **b.** impossible; **c.** $\frac{3}{1}$, $\frac{4}{1}$, $\frac{5}{1}$, and $\frac{5}{2}$; **d.** $\frac{1}{5}$

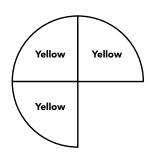
COMMENTS & EXTENSIONS: Challenge students to use two cards to form various decimals instead of fractions.

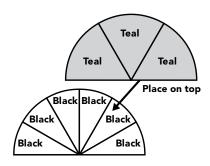
- Use Fraction Circles to model each given fraction.
- Adjust your models so both are made with the same number of pieces.
- Compare the fractions. Write <, >, or = in the circle.
- For problems 1–3, draw and color your adjusted models.
- For problems 4–8, compare without building models.

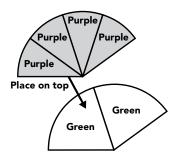


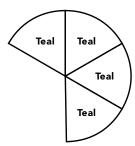


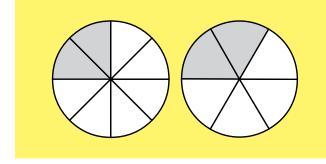
5. $\frac{1}{3} = \frac{4}{12}$ **6.** $\frac{6}{9} = \frac{2}{3}$ **7.** $\frac{4}{10} < \frac{2}{4}$ **8.** $\frac{9}{12} > \frac{3}{5}$


When each fraction is represented by the same number of pieces, how do the denominators representing those pieces help you determine which fraction is greater?

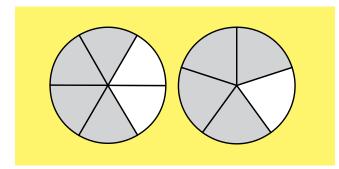

Sample answer: The fraction with the lesser denominator is greater.


Use Fraction Circles to build the model. Rewrite the fraction with the same denominator. Write <, >, or = in the circle.


1. $\frac{3}{4} > \frac{6}{12}$



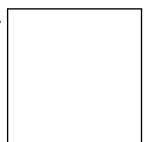
2. $\frac{2}{5}$ < $\frac{4}{6}$



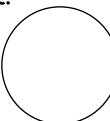
Use Fraction Circles to model each fraction. Then change one model so both use the same number of pieces. Draw the models by shading or coloring the circles. Write <, >, or =.

4. $\frac{2}{3}$ < $\frac{4}{5}$

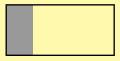



Compare the fractions. Write <, >, or =.

- **6.** $\frac{2}{8} < \frac{1}{2}$ **7.** $\frac{1}{3} > \frac{3}{10}$


Shade $\frac{1}{4}$ of these figures.

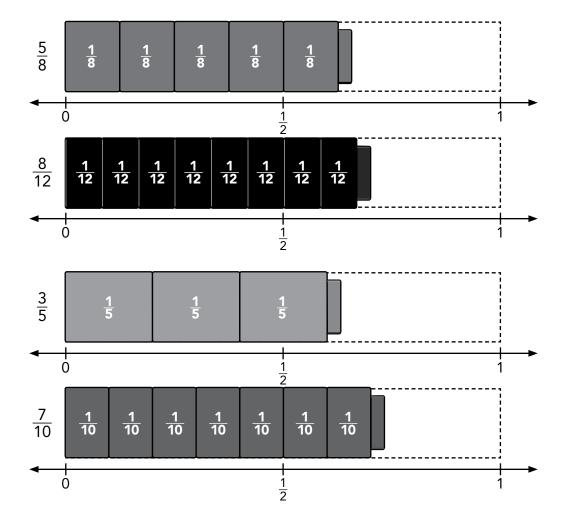
a.



C.

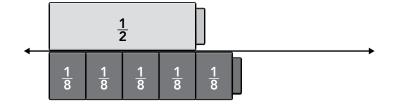
ANSWER: a. Sample:

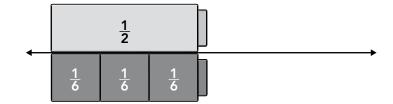
b. Sample:


c. Sample:

COMMENTS & EXTENSIONS: Students have dealt with "half of a half." Now ask them to show $\frac{1}{2}$ of the $\frac{1}{4}$ they have shaded. Can they figure out what part of the whole "half of a fourth" is?

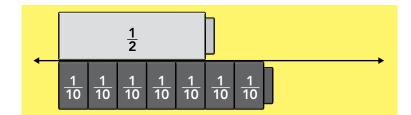
- For problem 1, use Fraction Towers to model the fractions.
- Draw your models on the outlines. Label each fraction piece.
- For problems 2–7, refer to your drawings in problem 1. Write <, >, or = in the (
- For problems 8–10, write <, >, or = in the


1.

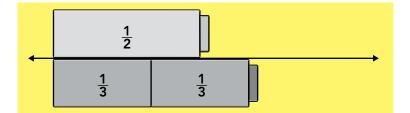

10.

Use Fraction Towers to build the model on a Fraction Number Line. Compare the fractions. Write <, >, or = in the (

1. $\frac{5}{8} > \frac{1}{2}$



2. $\frac{3}{6} = \frac{1}{2}$



Use Fraction Towers to model the fractions on a Fraction Number Line. Draw your model and compare the fractions. Write <, >, or = in the (

3. $\frac{7}{10} > \frac{1}{2}$

4. $\frac{2}{3} > \frac{1}{2}$

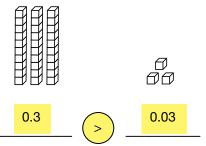
Compare the fractions. Write <, >, or = in the

6. $\frac{4}{10}$ < $\frac{1}{2}$

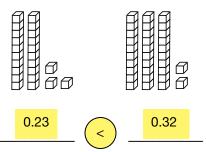
7. $\frac{4}{10} < \frac{3}{4}$

9. $\frac{3}{5}$ > $\frac{1}{2}$

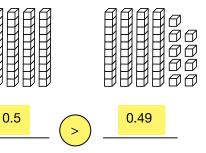
Express the decimals as fractions or mixed numbers.

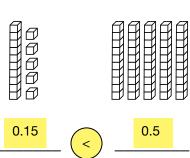

- **a.** 1.01
- **b.** 0.04
- **c.** 3.5
- **d.** 0.91

ANSWER: a. $1\frac{1}{100}$; b. $\frac{4}{100}$; c. $3\frac{1}{2}$; d. $\frac{91}{100}$

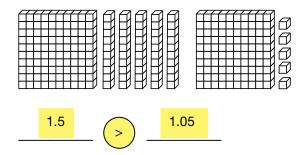

COMMENTS & EXTENSIONS: One way to look at the decimal point is merely as a marker for the units place. Another useful way to look at it is as a separator between the whole numbers and fractions of numbers.

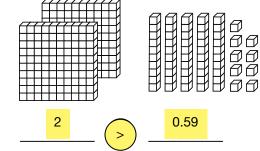
- Use Base Ten Blocks to model each number. Let the flat represent one whole.
- Write the decimal under each picture.
- Write < or > in the


1.

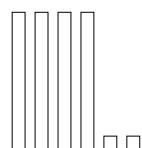


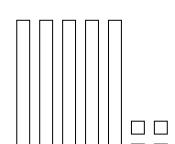
2.

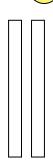



3.

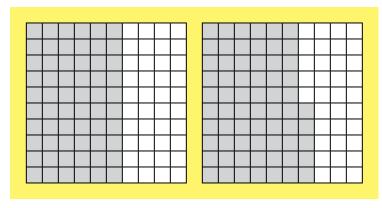
5.

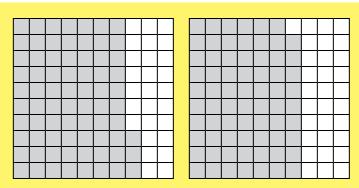



Write < or > in the


Use Base Ten Blocks to build each model. Let the flat represent one whole. Compare the decimals using >, <, or =.

0.42 < 0.54




2. 0.2 = 0.20

Use Base Ten Blocks to model each decimal. Draw your models on the grids. Compare the decimals using >, <, or =.

4. 0.73 (>

Compare the decimals using >, <, or =.

- 0.28 < 0.35

- 10.