\qquad
Use Base Ten Blocks to build each pair of numbers. Estimate each sum or difference to the nearest 100.
1.

Model: \qquad $+$ \qquad
Estimate: \qquad $+$ \qquad = \qquad
2.

Model: \qquad - \qquad
Estimate: \qquad - \qquad $=$ \qquad

Build each problem using Base Ten Blocks. Sketch the model. Estimate each sum or difference to the nearest 10.
3. $77+42$
4. $261-237$
\qquad $+$ \qquad $=$ \qquad
\qquad - \qquad $=$ \qquad

Estimate each sum or difference to the nearest 10.
5. $522+179$
\qquad
\qquad
\qquad
6. $85-53$
\qquad $-$ \qquad $=$ \qquad
Estimate each sum or difference to the nearest 100.
7. $103+517$
\qquad
\qquad
8. $463-268$
\qquad - \qquad = \qquad
9. $145+827$
10. $557-299$
\qquad $+$ \qquad $=$ \qquad
\qquad - \qquad = \qquad

Name \qquad

Challenge! Write rules for Base Ten Blocks that describe how to round numbers to the nearest 10, nearest 100, and nearest 1,000 . Use examples or draw pictures to help.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Use Base Ten Blocks to build each number.

Find the sum or difference.

1.

Sum: \qquad
2.

Difference: \qquad

Build each problem using Base Ten Blocks. Then sketch the model. Find the sum or difference. Name any regrouping needed.
3.
628
$+259$
4.
463
-278

Find each sum or difference.

5. $356+288=$ \qquad
6. $235-154=$ \qquad 7. $416+378=$ \qquad
7. $815-421=$ \qquad
8. $81+425=$ \qquad 10. $990-386=$ \qquad

Name

Challenge! Explain why when adding or subtracting two numbers, you work from right to left. Draw a picture to help.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Use Base Ten Blocks to build each number. Use rods to find the product of each number modeled and 10.

1. \otimes \otimes 8 $\stackrel{8}{\otimes}$
2. $\theta \theta \theta \theta \theta \theta \theta$
3. $\otimes \otimes \pi$
$\theta \otimes \theta$
$\theta \otimes \theta$
\qquad $\times 10=$ \qquad
\qquad $\times 10=$ \qquad
$\times 10=$ \qquad

Build each problem using Base Ten Blocks. Then sketch the model. Write each product.
4. $8 \times 10=$ \qquad
5. $15 \times 10=$ \qquad
6. $21 \times 10=$ \qquad
7. $8 \times 20=$ \qquad
8. $4 \times 20=$ \qquad
9. $7 \times 20=$ \qquad

Find the answer to each multiplication problem.
10. $3 \times 10=$ \qquad
11. $12 \times 10=$ \qquad 12. $24 \times 10=$ \qquad
13. $6 \times 20=$ \qquad
\qquad 15. $15 \times 20=$ \qquad

Name

Challenge! Explain how Problems 11 and 13 have the same product when their factors are different.
\qquad
\qquad
\qquad
\qquad
Use Base Ten Blocks to build the model. Find the product.

1. $3 \times 50=3 \times 5 \times 10=$ \qquad

2. $4 \times 30=4 \times 3 \times 10=$ \qquad滊㞅

$F 7$

Use Base Ten Blocks to model the product. Sketch the model. Complete the multiplication sentence.
3. 7×20
4. 4×40
\qquad \times \qquad $\times 10=$ \qquad
\qquad \times \qquad $\times 10=$ \qquad

Find the answer to each multiplication problem.
5. $8 \times 40=$ \qquad
6. $9 \times 20=$ \qquad 7. $6 \times 70=$ \qquad
8. $3 \times 90=$ \qquad
9. $8 \times 50=$ \qquad
10. $4 \times 80=$ \qquad
11. $9 \times 60=$ \qquad 12. $7 \times 40=$ \qquad 13. $6 \times 60=$ \qquad

Name \qquad

Challenge! Marcus bought a box of cards. In the box there were 6 smaller boxes, and in each of those boxes there were 6 packs of 10 cards. To find the total number of cards he bought, Marcus wrote this equation: $6 \times 60=360$. Is he correct? Explain how you know.
\qquad
\qquad

