\qquad

Use Fraction Towers to draw a line plot of the data.
 Answer the question.

1. Lisa is measuring pieces of ribbon in yards. They are $\frac{1}{4}, \frac{7}{8}, \frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{1}{2}, \frac{3}{4}, \frac{1}{2}, \frac{5}{8}, \frac{1}{2}, \frac{3}{4}$, and $\frac{5}{8}$. How many pieces are $\frac{1}{2}$ yard or longer?

\qquad
2. After students finished planting their seedlings, they turned in the leftover soil. In cups, the amounts left over are $\frac{1}{3}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}, \frac{2}{3}, \frac{1}{2}, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{1}{6}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{2}$, and $\frac{1}{3}$. How much soil is left over?

Draw a line plot to represent the data. Answer the question.

3. Miles walked: $\frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{7}{8}, \frac{3}{4}, \frac{5}{8}, \frac{7}{8}, \frac{1}{2}, \frac{3}{8}, \frac{1}{2}$, and $\frac{5}{8}$.

How many miles were walked in all? \qquad
4. Data: $\frac{2}{5}, \frac{7}{10}, \frac{1}{2}, \frac{4}{5}, \frac{3}{5}, \frac{7}{10}, \frac{1}{2}, \frac{2}{5}, \frac{3}{5}, \frac{1}{2}, \frac{2}{5}, \frac{1}{2}$, and $\frac{3}{5}$.
\qquad

Name

Challenge! Create a story context for Problem 4. How many of the data values are greater than $\frac{1}{2}$?
\qquad
Use Snap Cubes to model the rectangular solid. Find the volume.
1.

What is the length? \qquad

What is the width? \qquad

What is the height? \qquad

What is the volume? \qquad

Using Snap Cubes, model the solid with the given dimensions. Sketch the model. Find the volume.
2. length: 7 units, width: 5 units, height: 2 units

Find the volume of each rectangular solid.
3.

\qquad
5. length: 8 units width: 3 units height: 5 units
4.

Name

Challenge! Explain why the volume formulas $V=1 \times w \times h$ and $V=B \times h$ give the same results. (B represents the area of the base.)
\qquad

Use Snap Cubes to model the composite solid. Find the volume of each part. Then find the total volume.

1. Part 1: What is the height? \qquad
What is the width? \qquad
What is the depth? \qquad
What is the volume of Part 1 ? \qquad
Part 2: What is the height? \qquad
What is the width? \qquad
What is the depth? \qquad
What is the volume of Part 2? \qquad

What is the total volume of the two parts? \qquad

Using Snap Cubes, model the composite solid. Sketch the model. Find the volume of each part. Then find the total volume.
2. \qquad $+$ \qquad $=$ \qquad

Find the volume of the composite solid.
3. \qquad $+$ \qquad $=$ \qquad

Name

Challenge! Explain why each of the composite solids in the previous problems can be divided in two different ways and how that affects the total volume.
\qquad

