Are You Ready?

Students beginning Intermediate Counting \& Probability should be comfortable with geometric series, factoring and multiplying polynomials, and basic counting techniques. Examples of each are below.

Geometric Series.

1. Evaluate the sum: $1+2+2^{2}+2^{3}+\cdots+2^{10}$.
2. Assuming that $-1<x<1$, find a closed form expression for $1-x+x^{2}-x^{3}+x^{4}-x^{5}+\cdots$ by evaluating the sum as an infinite geometric series with common ratio $-x$.

Factoring and Multiplying Polynomials.

3. Find the polynomial $f(x)$ such that $(x-1) f(x)=x^{6}-1$.
4. Find the five terms with smallest degree of the product
$\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right)\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots\right)$.

Counting Techniques.

The following questions are from the "Do You Know Introduction to Counting \& Probability" quiz. If you cannot easily solve most of them, you should consider taking our Introduction to Counting \& Probability textbook before reading Intermediate Counting \& Probability.
5. How many multiples of 7 are between 83 and 229 ?
6. How many distinct arrangements are there of the letters in the word MATHEMATICS?
7. A coin is flipped, a 6 -sided die numbered 1 through 6 is rolled, and a 10 -sided die numbered 0 through 9 is rolled. What is the probability that the coin comes up heads and the sum of the numbers that show on the dice is 8 ?
8. Find the coefficient of $x^{3} y^{8}$ in the expansion of $\left(x-2 y^{2}\right)^{7}$.
9. Particle Man is at the origin in three-dimensional space. How many ways can Particle Man take a series of 12 unit-length steps, each step parallel to one of the coordinate axes, from the origin to $(3,4,5)$ without passing through the point $(2,3,2)$?
10. In poker, a hand is formed with 5 cards. The deck has 52 cards, separated into 4 suits. Each suit has 13 ranks which are the same in every suit. A full house occurs when a hand has 3 cards of one rank and 2 of another. How many different poker hands are full houses?
11. How many distinguishable ways can the faces of a regular hexagonal prism be painted 8 different colors (one color per face, no color used twice)?
12. There are $2 n$ players in a chess tournament. The first round consists of pairing the players to participate in n matches with every player playing one match. In terms of n, how many ways can this pairing take place?
13. A playoff series between two teams proceeds one game at a time until one team has won 5 games. What is the probability that the series lasts 9 games if each team is equally likely to win each game?

The answers to Are You Ready for Intermediate Counting \& Probability are below. (The answers to problem sets and challenges given in the class will include full detailed solutions as opposed to the mere answers provided below.)

1. 2047
2. $\frac{1}{1+x}$
3. $x^{5}+x^{4}+x^{3}+x^{2}+x+1$
4. $1+3 x+6 x^{2}+10 x^{3}+15 x^{4}+\cdots$
5. 21
6. 4989600
7. $1 / 20$
8. 560
9. 23520
10. 3744
11. 3360
12. $\frac{(2 n)!}{2^{n} n!}$
13. $35 / 128$
