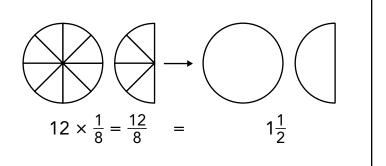
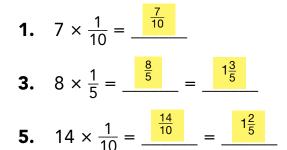
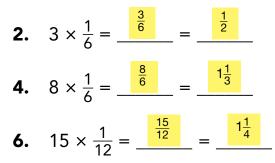


ANSWER: \$4


COMMENTS & EXTENSIONS: The key to solving this problem is to determine what part of the pizza is represented by the slice shown $(\frac{1}{8})$. Similar problems can be posed with other fractions of the pizza—for example, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, etc.

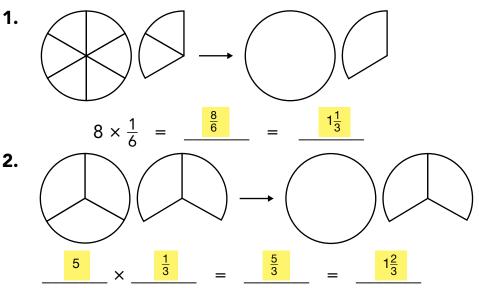

 $\mathcal{N}_{\mathcal{T}_{\mathcal{T}}^{\gamma}}^{\gamma\gamma}$ If a square pizza with sides 5 inches long costs \$5, how much does a square pizza with sides 10 inches long cost? (Hint: The answer is not \$10.)



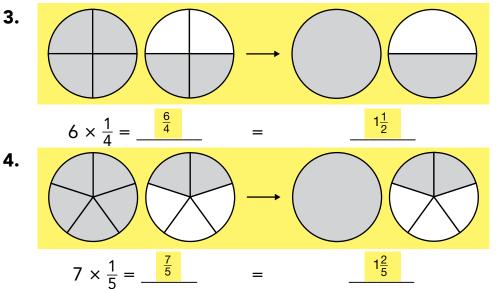
Try This

- Use Fraction Circles to model the product.
- Use the fewest number of Fraction Circle pieces to help you write the product in simplest form whenever possible.

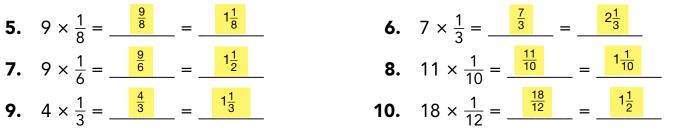
For Problems 7–9, write the fraction as the product of a whole number and a unit fraction.

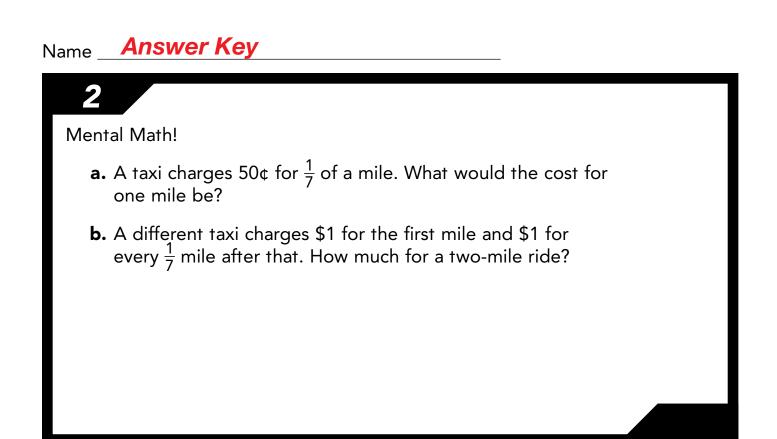

7.	$\frac{4}{5} = -$	4	_ × _	<u>1</u> 5		8.	$\frac{13}{8} = -$	13	_ × _	<u>1</u> 8	9.	$\frac{12}{12} = -$	12	_ × _	<u>1</u> 12	
----	-------------------	---	-------	---------------	--	----	--------------------	----	-------	---------------	----	---------------------	----	-------	----------------	--

Challenge


If *a* is a whole number and $\frac{1}{b}$ is a unit fraction, how do you express the product of $a \times \frac{1}{b}$?

© ETA hand2mind™


Use Fraction Circles to build the model. Fill in the blanks in the number sentence. Write the product as a mixed number in simplest form.


Use Fraction Circles to model the problem. Sketch the model. Write the product as a fraction and as a mixed number in simplest form.

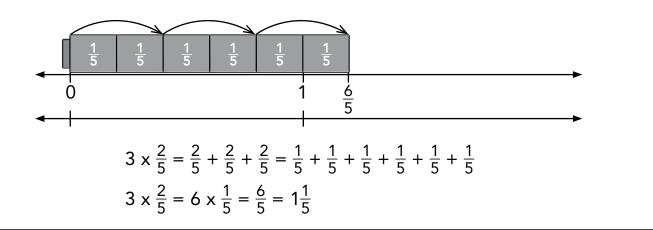
Write the product as a mixed number in simplest form.

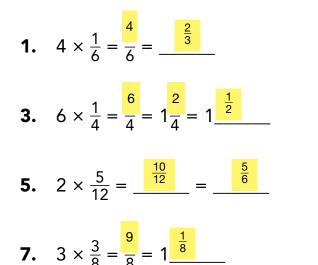
© ETA hand2mind[™]

ANSWER: a. \$3.50; **b.** \$8

COMMENTS & EXTENSIONS: The key to Part **a.** is that seven–sevenths of a mile make one mile.

If taxis are common in the community, ask students to gather data on taxicab rates and figure out the cost (and a range of costs) of a one-mile trip.


 $\mathcal{N}_{\mathcal{T}^{\gamma}}^{\mathcal{N}}$ When is it cheaper to take the taxi from Part **a.** over the taxi from Part **b.**?

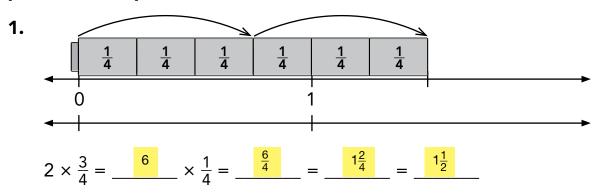


Try This

esso

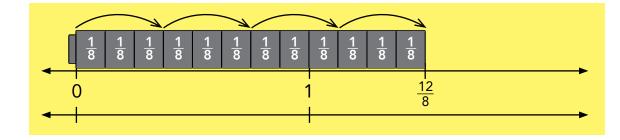
- Use Fraction Towers and Fraction Number Line 4 to model problems 1–6.
- Write the product in simplest form.
- Try to solve problems 7–8 without building models.

2. $5 \times \frac{1}{3} = \frac{5}{3} = 1 \frac{2}{3}$

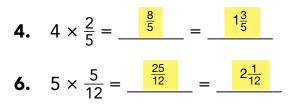

4.
$$3 \times \frac{3}{10} = \frac{\frac{9}{10}}{\frac{9}{10}}$$

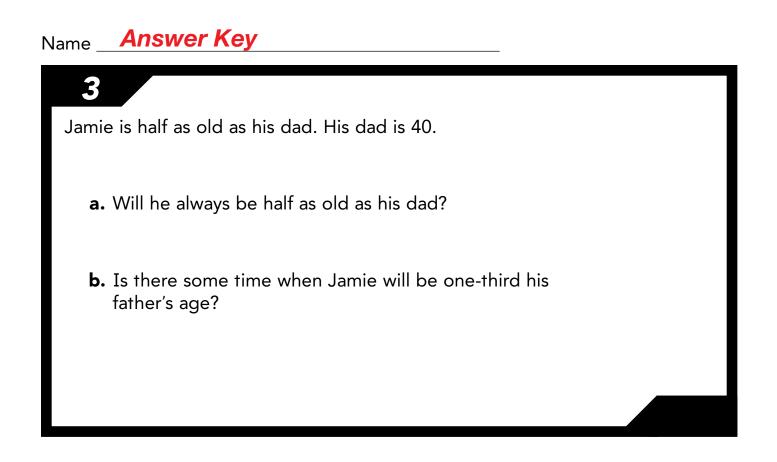
6.
$$5 \times \frac{2}{10} = \frac{\frac{10}{10}}{\frac{10}{10}} = \frac{1}{10}$$

8.
$$4 \times \frac{2}{3} = \frac{\frac{8}{3}}{2} = \frac{2\frac{2}{3}}{2}$$

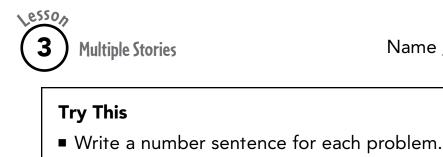


Use Fraction Towers and Fraction Number Line 4 to build the model. Fill in the blanks and write the product in simplest form.


Use Fraction Towers and Fraction Number Line 4 to model the problem. Sketch your model. Fill in the blanks and write the product in simplest form.


2.
$$4 \times \frac{3}{8} = \frac{12}{12} \times \frac{\frac{1}{8}}{\frac{1}{8}} = \frac{\frac{12}{8}}{\frac{12}{8}} = \frac{1\frac{4}{8}}{\frac{12}{8}} = \frac{1\frac{1}{2}}{\frac{12}{2}}$$

Write the product in simplest form.


3.
$$2 \times \frac{4}{10} = \frac{\frac{8}{10}}{\frac{4}{3}} = \frac{\frac{4}{5}}{\frac{11}{3}}$$

5. $2 \times \frac{2}{3} = \frac{\frac{4}{3}}{\frac{4}{3}} = \frac{\frac{11}{3}}{\frac{11}{3}}$

ANSWER: a. no; **b.** Not anymore, but when Jamie was age 10, Jamie's father was 30.

COMMENTS & EXTENSIONS: Trial-and-Success is a good approach here. What will Jamie's age be when his father is 42? Then try 45 and 50. What do you learn?

- Express the answer in simplest form.
- Use Fraction Circles, Fraction Squares, or Fraction Towers, if needed.
- **1.** Laurie needs 2 pieces of ribbon. Each piece needs to be $\frac{7}{8}$ inch long. How many inches of ribbon does Laurie need?

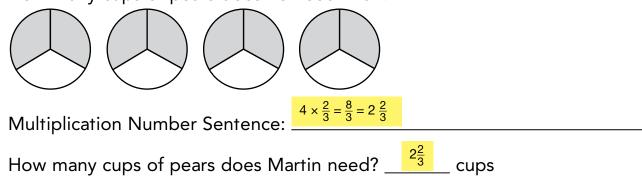
$$2 \times \frac{7}{8} = \frac{14}{8} = \frac{16}{8} = \frac{13}{4}$$
 inches

- 2. Josiah walked $\frac{7}{12}$ mile each day for 3 days. How far did Josiah walk? $3 \times \frac{7}{12} = \frac{21}{12} = 1\frac{9}{12} = 1\frac{3}{4}$ miles
- **3.** The length of one side of a square is $\frac{3}{10}$ meter. What is the perimeter of the square?

 $4 \times \frac{3}{10} = \frac{12}{10} = 1\frac{2}{10} = 1\frac{1}{5}$ meters

4. The length of one side of an equilateral triangle is $\frac{5}{12}$ yard. What is the perimeter of the triangle?

 $3 \times \frac{5}{12} = \frac{15}{12} = 1\frac{3}{12} = 1\frac{1}{4}$ yards


- 5. A park is on a rectangular plot of land that is 5 miles long and $\frac{3}{8}$ mile wide. What is the area of the park in square miles? $5 \times \frac{3}{8} = \frac{15}{8} = 1\frac{7}{8}$ square miles
- 6. Selena needs to water 6 new plants in her garden. If she uses $\frac{4}{5}$ gallon of water on each plant, how much water will she use in all? $6 \times \frac{4}{5} = \frac{24}{5} = 4\frac{4}{5}$ gallons
- 7. Lomas skated for $\frac{3}{4}$ hour each day for 5 days. How long did he skate? $5 \times \frac{3}{4} = \frac{15}{4} = 3\frac{3}{4}$ hours
- **8.** A serving of pudding is $\frac{2}{3}$ cup. If Margo made 12 servings for her friends, how much pudding did she make?

 $12 \times \frac{2}{3} = \frac{24}{3} = 8$ cups

Use Fraction Circles to model the story. Write a multiplication sentence for the story. Write the answer.

1. Martin will make $\frac{2}{3}$ -cup servings of pears for 4 children. How many cups of pears does he need in all?

Use Fraction Squares to model the story. Sketch your model. Write a multiplication sentence for the story. Write the answer.

2. Each lap around a track is $\frac{3}{5}$ of a kilometer. Molly walked around the track 4 times. How far did Molly walk?

Multiplication Number Sentence: $\frac{4 \times \frac{3}{5} = \frac{12}{5} = 2\frac{2}{5}}{4 \times \frac{3}{5} = \frac{12}{5} = 2\frac{2}{5}}$
How many kilometers did Molly walk? <u>2²5</u> kilometers

Solve the problem. Write a number sentence to show your solution.

3. Mark filled a measuring cup with $\frac{3}{4}$ of a cup of juice 3 times. What was the total amount of juice he poured into the measuring cup?

 $3 \times \frac{3}{4} = \frac{9}{4} = 2\frac{1}{4}$ cups of juice

4. Roberto baked a cake. He needed seven $\frac{1}{4}$ -cup servings of banana. How much banana did Robert need to bake the cake?

 $7 \times \frac{1}{4} = \frac{7}{4} = 1\frac{3}{4}$ cups of banana

5. Carolina is making picture frames. Each frame uses $\frac{4}{5}$ of a yard of wood. What is the total length of wood that Carolina will need to make 4 frames?

 $4 \times \frac{4}{5} = \frac{16}{5} = 3\frac{1}{5}$ yards of wood