Do You Know?

If you can solve nearly all of the following problems with little difficulty, then the text Introduction to Geometry would only serve as a review for you.

1. Prove the Pythagorean Theorem.
2. Find y in the diagram below.

3. Marcia could walk from A to B along arc $A B$ on the semicircular path, or she can walk along chord $A B$. Diameter $C D$ has length 180 m . How much farther is it to walk along the arc as opposed to the chord?

4. An ant starts at one vertex of a unit cube and walks to the opposite vertex along the surface of the cube. What is the minimum distance the ant can walk?
5. Spot's doghouse has a regular hexagonal base that measures one yard on each side. He is tethered to a vertex with a two-yard rope. What is the area, in square yards, of the region outside the doghouse that Spot can reach?
6. In rectangle $A B C D$, we have $A B=8, B C=9, H$ is on $B C$ with $B H=6, E$ is on $A D$ with $D E=4$, line $E C$ intersects line $A H$ at G, and F is on line $A D$ with $G F \perp A F$. Find the length $G F$.

7. There are two flagpoles, one of height 12 and one of height 16. A rope is connected from the top of each flagpole to the bottom of the other. The ropes intersect at a point x units above the ground. Find x. In the accompanying diagram, this is equivalent to finding the length of $E F$.

8. Three spheres are tangent to a plane at the vertices of a triangle and are tangent to each other. Find the radii of these spheres if the sides of the triangle are 6,8 , and 10.
9. Derive a general formula for the volume of the frustum of a cone with bases of radius R and r and height h.

The answers to Do You Know Introduction to Geometry are below.

1. (Note that there are many acceptable proofs.) In right triangle $A B C$ with right angle at A we wish to prove $A C^{2}+A B^{2}=B C^{2}$. Drop altitude $A D$ to hypotenuse $B C . \triangle A B C \sim \triangle D A C \sim \triangle D B A$ giving us $\frac{D C}{A C}=\frac{A C}{B C}$ and $\frac{D B}{A B}=\frac{A B}{B C}$. Now $A C^{2}=B C \cdot D C$ and $A B^{2}=B C \cdot D B$, so $A C^{2}+A B^{2}=B C(D C+D B)=B C^{2}$.
2. 10
3. $60 \pi-90 \sqrt{3}$
4. $\sqrt{5}$
5. 3π
6. 20
7. $\frac{48}{7}$
8. $r_{1}=\frac{12}{5}, r_{2}=\frac{15}{4}, r_{3}=\frac{20}{3}$
9. $V=\frac{1}{3} \pi h\left(R^{2}+R r+r^{2}\right)$
