Hands-On Standards, Common Core Edition

Grade 8

Hands-On Standards ${ }^{\circledR}$, Common Core Edition Grade 8

hand2mind 78872
ISBN 978-0-7406-9446-2

> EA hand2
> mix max mind

Vernon Hills, IL 60061-1862
800-445-5985
www.hand2mind.com
© 2012 by ETA hand 2 mind ${ }^{\text {TM }}$
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Permission is granted for limited reproduction of those pages from this book with a copyright line in the inner margin for classroom use and not for resale.

Printed in the United States of America.

Contents

Introduction 1
A Walk Through a Lesson 2
A Walk Through a Student Page 4
The Number System 6
Lesson 1 Approximating Square Roots 8
8.Ns. 2
Lesson 2 Irrational Square Roots 12
8.NS. 2
16
Expressions and Equations
18
Lesson 1 Squares and Square Roots
8.EE. 2
Lesson 2 Cube Roots 22
8.EE. 2
Lesson 3 Slope as Rate of Change 26 8.EE. 5
Lesson 4 Problem Solving withRates of Change 308.EE.8a
Lesson 5 Lines Through $(0,0)$ and $(0, b)$ 34
8.EE.5, 8.EE. 6Lesson 6 One, No, or InfinitelyMany Solutions38
8.EE.7a
Lesson 7 Solving Multi-Step Equations 42
8.EE.7b
Lesson 8 Solving Equations with Variableson Both Sides46
8.EE.7b
Lesson 9 Solving Systems of Equations 50
8.EE.8b, 8.EE.8c
Statistics and Probability 110
Lesson 1 Scatter Plot Diagrams 112
8.SP. 1
Lesson 2 Line of Best Fit 1168.SP.1, 8.SP.2, 8.SP. 3
Lesson 3 Make a Conjecture Using a Scatter Plot 120
8.SP.1, 8.SP. 2
Blackline Masters
BLIM 1 Inch Grid Paper 124
BLIM 2 Algebra Tiles Equations Mat 125
BLM 3 Algebra Tiles Mini Equations Mats 126
BLIM 4 Function Tables 127
BLM 5 Algeblocks ${ }^{\oplus}$ Sentences Mat 128
BLIM $6 \frac{1}{4}$-Inch Grid Paper 129
BLIM 7 Dot Paper 130
BLIM 8 Mini Dot Paper Grids 131
BLIM 9 Centimeter Grid Paper 132
Glossary of Manipulatives 133
Index 135

Introduction

How do we help students find meaning in mathematics? That is, how do we give students more than a rote script for reciting facts and churning out computations? How do we help students develop understanding?

Hands-On Standards ${ }^{\oplus}$, Common Core Edition Grade 8 is an easy-to-use reference manual for teachers who want to help students discover meaning in mathematics. Each of the manual's 27 lessons demonstrates a hands-on exploration using manipulatives. The goal is to help students get a physical sense of a problem-to help students get their hands on the concepts they need to know and to help them "see" the meaning.

Each lesson in Hands-On Standards targets a clearly stated objective. The main part of a lesson offers a story problem that students can relate to and has the students work on the problem using a hands-on approach. Full-color photographs demonstrate the suggested steps. In addition to the main activity, each lesson includes suggested points of discussion, ideas for more exploration, a formative assessment item, and practice pages to help students solidify their understanding. The instructional model is a progression from concrete to abstract.

The book is divided into five sections-The Number System, Expressions and Equations, Functions, Geometry, and Statistics and Probability. These correspond to the five content domains for Grade 8 as cited in the Common Core State Standards for Mathematics.

Each lesson in this book features one of the following manipulatives: Algebra Tiles'" • AngLegs ${ }^{\text {® }}$ - Centimeter Cubes • Color Tiles • Folding Number Line - Pattern Blocks • XY Coordinate Pegboard

Read on to find out how Hands-On Standards, Common Core Edition Grade 8 can help the students in your class find meaning in math and build a foundation for future math success!

A Walk Through a Lesson

Each lesson in Hands-On Standards ${ }^{\circledR}$ includes many features, including background information, objectives, pacing and grouping suggestions, discussion questions, and ideas for further activities, all in addition to the step-by-step, hands-on activity instruction. Take a walk through a lesson to see an explanation of each feature.

Try lt! Arrow

Lesson Introduction

A brief introduction explores the background of the concepts and skills covered in each lesson. It shows how they fit into the larger context of students' mathematical development.

In order to provide a transition from the introduction to the activity, an arrow draws attention to the Try It! activity on the next page. When the activity has been completed, return to the first page to complete the lesson.

Objective

The Objective summarizes the skill or concept students will learn through the hands-on lesson.

Common Core State Standards

Each lesson has been created to align with one or more of the Common Core State Standards for Mathematics.

Talk About It

The Talk About It section provides post-activity discussion topics and questions. Discussion reinforces activity concepts and provides the opportunity to make sure students have learned and understood the concepts and skills.

Solve It

Solve It gives students a chance to show what they've learned. Students are asked to return to and solve the original word problem. They might summarize the lesson concept through drawing or writing, or extend the skill through a new variation on the problem.

The Number System

Approximating Square Roots

 including square roots. In previous grades, students learned how to find the principal square root of numbers that produce a positive rational number. In this lesson, students will estimate the square roots of numbers that produce positive irrational numbers.
Trylt! Perform the Try It' activity on the next page.

Talk About It

Discuss the Try It! activity.
Ask: Look at a 1×1 square. How many squares make up a 1×1 square? Elicit 1. What is the square root of 1 ?

- Ask: Look at a 2×2 square. How many squares make up a 2×2 square? Elicit 4 . What is the square root of 4 ? Continue similarly for another example or two.
- Ask: What is the next square after 16 ? (25) What is the square root of 25 ? Continue through 64 and its square root (8), if necessary.
- Say: Use a calculator to find the square root of 55. Compare it to your estimate. Is it between 7 and 7.5 ?

Solve it

Reread the problem with students. Have students build squares to determine between which integers the square of their target number falls. Have students roughly estimate the square root, using the relative distance between the squares of two integers.

More Ideas

For other ways to teach about squares and square roots-

- Have students create a table of all integers from 1 to 30 and estimate the square roots of the numbers using color tiles.
Have students find the approximate location of $\sqrt{3}$ on a Folding Number Line.

Formative Assessment
Have students try the following problem.
Which of the following is the best estimate for the square root of 45 ?
A. Between 4 and 5 but closer to 4
B. Between 4 and 5 but closer to 5
C. Between 6 and 7 but closer to 6
D. Between 6 and 7 but closer to 7

More Ideas

More Ideas provides additional activities and suggestions for teaching about the lesson concept using a variety of manipulatives. These ideas might be suggestions for additional practice with the skill or an extension of the lesson.

Formative Assessment

Formative assessments allow for on-going feedback on students' understanding of the concept.

Try lt !

The Try It! activity opens with Pacing and Grouping guides. The Pacing guide indicates about how much time it will take for students to complete the activity, including the post-activity discussion. The Grouping guide recommends whether students should work independently, in pairs, or in small groups.
Next, the Try It! activity is introduced with a real-world story problem. Students will "solve" the problem by performing the hands-on activity. The word problem provides a context for the hands-on work and the lesson skill.
The Materials box lists the type and quantity of materials that students will use to complete the activity, including manipulatives such as Color Tiles and Pattern Blocks.
This section of the page also includes any instruction that students may benefit from before starting the activity, such as a review of foundational mathematical concepts or an introduction to new ones.

Try It! 30 minutes Pairs
Here is a problem about estimating square roots.
Mr. Malcom has enough 1' by 1' carpet tiles left over from a building project to cover an area of 55 square feet. He has offered to donate the tiles to a neighborhood preschool. The preschool wants to carpet a square play area with the tiles. What is the largest square they can make?

Introduce the problem. Then have students do the activity to solve the problem. Distribute the materials.

1. Have students build up the following squares with their color tiles: $1 \times 1,2 \times 2,3 \times 3,4 \times 4$, $5 \times 5,6 \times 6,7 \times 7$, and 8×8. Have students determine the area of each of the squares as they work. (Note: Students may not have color tiles in the proportions shown here. The layering is done for clarity.)

2. Ask: Do you think the square root is greater or less than 7.5? Explain. Elicit from students that the square root is less than 7.5 because 55 is closer to 49 than to 64

3. Now have students determine which squares the number of carpet tiles falls between. Ask: Between which squares does 55 fall? Elicit from students that it falls between 7 (the square is 49) and 8 (the square is 64).

A Look Out!
Some students may not be able to articulate Some students may not be able to articulate
how to estimate square roots without hearing how to estimate square roots without hearing others explain it first. Approximating square roots should improve with practice. Point out to students that the word root in mathematics means "the answer." For a given number of tiles, the square root of that number will give you the dimensions of the square that you can build with that number of tiles.

Look Out!

Look Out! describes common errors or misconceptions likely to be exhibited by students at this age dealing with each skill or concept and offers troubleshooting suggestions.

Step-by-Step Activity Procedure

The hands-on activity itself is the core of each lesson. It is presented in three-or sometimes four-steps, each of which includes instruction in how students should use manipulatives and other materials to address the introductory word problem and master the lesson's skill or concept. An accompanying photograph illustrates each step.

A Walk Through a Student Page

Each lesson is followed by a corresponding set of student pages. These pages take the student from the concrete to the abstract, completing the instructional cycle. Students begin by using manipulatives, move to creating visual representations, and then complete the cycle by working with abstract mathematical symbols.

Exercise

Concrete and Representational exercises (pictorial representations of the featured manipulative) help students bridge conceptual learning to symbolic mathematics.

Standards-Based Math Practice

Abstract exercises provide standards-based math practice to allow students to deepen their understanding of the featured skill.

1 The Number System

Use Color Tiles to estimate the square root of the given number. Fill in the blanks. Write a sentence about the estimate of the square root.

1. $\sqrt{28}$
(Check students' work.)

28 is between the square numbers of
 and \qquad 6 It is closer to \qquad 5 .

