Hands-On Standards*, Common Core Edition

Grade 6

Contents

Introduction 1
A Walk Through a Lesson 2
A Walk Through a Student Page 4
Ratios and Proportional Relationships 6
Lesson 1 Ratios 86.RP. 1
Lesson 2 Proportions 126.RP.1, 6.RP.2, 6.RP.3b
Lesson 3 Ratio and Proportion:Finding the Ratio16
6.RP.3b
The Number System 20
Lesson 1 Fraction Division 226.NS. 1
Lesson 2 Introduction to Integers. 26
6.NS.5, 6.NS.6a, 6.NS.6c, 6.NS.7a, 6.NS.7b
Lesson 3 4-Quadrant Graphing 30Lesson 4 Compare and Order Fractionsand Decimals34
6.NS.6c
Lesson 5 Estimating Fractional Numbers 38
6.Ns.6c
Lesson 6 Comparing Rational Numbers 42
6.Ns.6c, 6.Ns.7b
Lesson 7 Absolute Value 46
6.NS.7c, 6.NS.7d
Expressions and Equations 50
Lesson 1 Expressions with a Variable 52
6.EE.2a, 6.EE.2c, 6.EE. 6
Lesson 2 Variables x, x^{2}, and Constants 56
6.EE.2c
Lesson 3 Combining Like Terms I 60
6.EE. 3
Lesson 4 Combining Like Terms II. 646.EE. 3
Lesson 5 Algebraic Equivalencies: Distributive Property 68
6.EE. 3
Lesson 6 Equations with a Variable 726.EE.5, 6.EE.6, 6.EE. 7
Lesson 7 Addition andSubtraction Equations 766.EE.5, 6.EE.6, 6.EE. 7
Lesson 8 Multiplication and Division Equations 80
6.EE.5, 6.EE.6, 6.EE. 7
Lesson 9 Patterns andFunction Tables84
6.EE. 9
Geometry 88
Lesson 1 Area of a Parallelogram 90 6.G. 1
Lesson 2 Constant Perimeter andChanging Area94
6.G. 1
Lesson 3 Area of a Triangle 98Lesson 4 Area of Trapezoids1026.G.1, 6.G. 3
Lesson 5 Shapes in theCoordinate Plane106
6.G. 3
Lesson 6 Nets 110
6.G. 4
Lesson 7 Surface Area of aRectangular Solid114
Statistics and Probability 118
Lesson 1 Distributions 120
6.SP.2, 6.SP.4, 6.SP.5a
Lesson 2 Mean, Median, Mode, and Range 124
6.SP.3, 6.SP.5cLesson 3 Graphical Representations:Histograms and Circle Graphs1286.SP.4, 6.SP.5a
Blackline Masters
BLIM 1 Fraction Towers 132
BLIM 2 1-Inch Number Lines 133
BLIM 3 Fraction Tower ${ }^{\oplus}$ Number Lines 134
BLIM 4 Double Fraction Tower ${ }^{\ominus}$
Number Lines 135
BLIM 5 1-cm Number Lines 136
BLIM 6 Algeblocks ${ }^{\circledR}$ Basic Mat. 137
BLM 7 Algeblocks ${ }^{\oplus}$ Quadrant Mat 138
BLIM 8 Function Tables 139
BLIM 910×10 Grid 140
BLM 10 Centimeter Grid Paper 141
BLM 11 Centimeter Dot Paper 142
BLIM 12 4-Quadrant Graph Paper 143
BLIM 13 Net Pattern 144
Glossary of Manipulatives 145
Index 147

Introduction

How do we help students find meaning in mathematics? That is, how do we give students more than a rote script for reciting facts and churning out computations? How do we help students develop understanding?

Hands-On Standards ${ }^{\circledR}$, Common Core Edition Grade 6 is an easy-to-use reference manual for teachers who want to help students discover meaning in mathematics. Each of the manual's 29 lessons demonstrates a hands-on exploration using manipulatives. The goal is to help students get a physical sense of a problem-to help students get their hands on the concepts they need to know and to help them "see" the meaning.

Each lesson in Hands-On Standards targets a clearly stated objective. The main part of a lesson offers a story problem that students can relate to and has students work on the problem using a hands-on approach. Full-color photographs demonstrate the suggested steps. In addition to the main activity, each lesson includes suggested points of discussion, ideas for more exploration, a formative assessment item, and practice pages to help students solidify their understanding. The instructional model is a progression from concrete to abstract.

This book is divided into five sections-Ratios and Proportional Relationships, The Number System, Expressions and Equations, Geometry, and Statistics and Probability. These correspond to the five content domains for Grade 6 as cited in the Common Core State Standards for Mathematics.

Each lesson in this book features one of the following manipulatives:
Algeblocks ${ }^{\ominus}$ - AngLegs ${ }^{\circledR}$ - Centimeter Cubes - Color Tiles • Cuisenaire ${ }^{\oplus}$ Rods • Deluxe Rainbow Fraction ${ }^{\circledR}$ Circles • Fraction Tower ${ }^{\oplus}$ Equivalency Cubes - Geoboard • Pattern Blocks • Relational GeoSolids ${ }^{\circledR}$ Snap Cubes ${ }^{\circledR}$ XY Coordinate Pegboard

Read on to find out how Hands-On Standards, Common Core Edition Grade 6 can help the students in your class find meaning in math and build a
 foundation for future math success!

A Walk Through a Lesson

Each lesson in Hands-On Standards includes many features, including background information, objectives, pacing and grouping suggestions, discussion questions, and ideas for further activities, all in addition to the step-by-step, hands-on activity instruction. Take a walk through a lesson to see an explanation of each feature.

Lesson Introduction

A brief introduction explores the background of the concepts and skills covered in each lesson. It shows how they fit into the larger context of students' mathematical development.

Try It! Arrow

In order to provide a transition from the introduction to the activity, an arrow draws attention to the Try It! activity on the next page. When the activity has been completed, return to the first page to complete the lesson.

Objective

The Objective summarizes the skill or concept students will learn through the hands-on lesson.

Common Core State Standards

Each lesson has been created to align with one or more of the Common Core State Standards for Mathematics.

Talk About lt

The Talk About It section provides post-activity discussion topics and questions. Discussion reinforces activity concepts and provides the opportunity to make sure students have learned and understood the concepts and skills.

Solve It

Solve It gives students a chance to show what they've learned. Students are asked to return to and solve the original word problem. They might summarize the lesson concept through drawing or writing, or extend the skill through a new variation on the problem.

Ratios and Proportional Relationships

Ratios

Students use ratios to show various relationships between quantities, including whole to part, part to whole, and part to part. With an understanding of ratio, students can engage in proportional reasoning, which is a major component of a student's foundation in math.

Try lt! Perform the Try It/ activity on the next page.

Talk About It

Discuss the Try It! activity.

- Ask: How many yellow rods did you use? What is the ratio of yellow to orange? What is the ratio of orange to yellow? Are these ratios the same? Why or why not?
Ask: How many red rods make one orange rod? What is the ratio of red to orange? Orange to red? What is the ratio of white to yellow? Yellow to white?
Ask: Is the order important when we describe the ratio?

Solve It

Reread the problem with students. As they represent and identify the ratios, have them write the ratios in words and in numbers. Help them identify whether the ratio is whole to part, part to whole, or part to part.

More Ideas

For other ways to teach ratios-

- Use Two-Color Counters to solve problems such as The ratio of frogs to ducks in a pond is 5 to 3 . Write three ratios to represent this situation. Have students represent the frogs with the yellow side of the counters and the ducks with the red side of the counters. Say: The total number of ducks and frogs is 8 , so the ratio of frogs to the total number of ducks and frogs is 5 to 8. Guide students to write other ratios.
- Extend the lesson using Cuisenaire ${ }^{\oplus}$ Rods to generate equal ratios. Provide a scenario such as A trail mix recipe calls for 1 cup of raisins and 3 cups of peanuts. Find the amounts of raisins and peanuts in three different-size batches of this recipe. Have students build trains on the Centimeter Grid (BLM 10) for each ratio.

Formative Assessment

Have students try the following problem.
There are 3 parrots, 7 parakeets, and 2 finches at a pet store. What is the ratio of parakeets to birds?
$\begin{array}{llll}\text { A. } 12 \text { to } 7 & \text { B. } 7: 5 & \text { C. } \frac{7}{12} & \text { D. } 5 \text { to } 7\end{array}$

More Ideas

More Ideas provides additional activities and suggestions for teaching about the lesson concept using a variety of manipulatives. These ideas might be suggestions for additional practice with the skill or an extension of the lesson.

Formative Assessment

Formative assessments allow for on-going feedback on students' understanding of the concept.

Try lt !

The Try It! activity opens with Pacing and Grouping guides. The Pacing guide indicates about how much time it will take for students to complete the activity, including the post-activity discussion. The Grouping guide recommends whether students should work independently, in pairs, or in small groups.
Next, the Try It! activity is introduced with a real-world story problem. Students will "solve" the problem by performing the hands-on activity. The word problem provides a context for the hands-on work and the lesson skill.
The Materials box lists the type and quantity of materials that students will use to complete the activity, including manipulatives such as Color Tiles and Pattern Blocks.
This section of the page also includes any instruction that students may benefit from before starting the activity, such as a review of foundational mathematical concepts or an introduction to new ones.

Step-by-Step Activity Procedure

The hands-on activity itself is the core of each lesson. It is presented in three-or sometimes four-steps, each of which includes instruction in how students should use manipulatives and other materials to address the introductory word problem and master the lesson's skill or concept. An accompanying photograph illustrates each step.

A Walk Through a Student Page

Each lesson is followed by a corresponding set of student pages. These pages take the student from the concrete to the abstract, completing the instructional cycle. Students begin by using manipulatives, move to creating visual representations, and then complete the cycle by working with abstract mathematical symbols.

