

Use AngLegs to model the triangles shown. Write the scale factor for Triangle 2.

1. Original Triangle

The scale factor of Triangle 2 is _____.

Using AngLegs, build a triangle with the legs named. Then build a triangle with a scale of 3:1. Sketch the models.

2. orange, yellow, and purple

Draw each figure using the scale factor given.

3. scale factor of 2

4. scale factor of 3

© ETA hand2mind™

Ν	а	m	۱	е
---	---	---	---	---

Challenge! Triangle B has a scale factor of 2:1 to Triangle A. Which triangle is larger and by how much? Draw a picture.

Name _____

Use the AngLegs shown. Determine whether you can build a triangle.

Can you build a triangle? _____

Using AngLegs, try to make at least one triangle. Draw the triangle(s) or write an explanation if no triangle can be made.

2. Angles: 30°, 60°, 90°

vesso,

2

Geometry

3. Sides: orange, orange, yellow

4. Angles: 30°, 30°, 60°

5. Sides: blue, green; Angle between: 45°

Ν	ame	
---	-----	--

Challenge! Can you define a triangle by naming its three angles? Explain.

Use Relational GeoSolids to model each cylinder. Use a ruler to find the diameter of the base. Find the circumference of the base. Use 3.14 for π .

Draw a circle that has each diameter. Find the circumference of the circle. Use 3.14 for π .

3. 3 inches

4. 11 centimeters

Find the circumference of each circle. Use 3.14 for π .

N	am	ne
---	----	----

Challenge! Explain the meaning of π in terms of the parts of a circle. How is the circumference of a circle related to π ?

Use Fraction Circles to model the circle. Use a Centimeter Grid to find the area of the circle.

2. 8-cm radius

3. 2-inch diameter

Find the area of each circle. Use 3.14 for π .

Challenge! Determine the area of a circle on grid paper by arranging its sections into a figure having a length and width. Describe the length. Describe the width.

Name

Using an XY Coordinate Pegboard, model an irregular figure. Sketch the model. Find the area of the irregular figure.

vesso,

5

Geometry

Find the areas of the shapes into which you can divide your figure.

Find the area of each figure.

N	am	ne
---	----	----

Challenge! Why do you divide an irregular figure into other shapes to find its area? Draw a picture to help.

Name

Use Pattern Blocks and 1-inch Triangular Grid Paper to build each figure shown. Find the number of triangles covered. Write the area of the figure in triangular units.

Using Pattern Blocks and 1-inch Triangular Grid Paper, build a quadrilateral that has each area given. Sketch the model.

3. 20 triangular units

4. 30 triangular units

Challenge! Explain how a hexagon formed using two trapezoids can have the same area as a hexagon formed using six equilateral triangles. Draw a picture to help.