Subtract Mixed Numbers

Students have performed addition and subtraction with fractions, and they have added mixed numbers. They round out their experience with these concepts by learning to subtract with mixed numbers. The number sense that students build in these activities will serve them when they multiply with fractions.

Vocabulary/ELL Support

Write the following problem on the board: Paula makes 2 peanut butter sandwiches and cuts each one into fourths. She eats 3 pieces. How much does Paula have left?
Give students two squares of construction paper.
■ Ask: How can you model this problem using the paper? [Sample: Cut each square into fourths; remove $\frac{3}{4}$ from one.]

- Ask: How much does Paula have left? [$\frac{5}{4}$, or $1 \frac{1}{4}$]

Elicit from students the two different ways of expressing the answer. Note that because $1 \frac{1}{4}$ is a combination, or mix, of a whole number with a fraction, the number is called a mixed number.

- A mixed number (such as $2 \frac{3}{4}$) has a whole-number part (2) and a fraction part $\left(\frac{3}{4}\right)$; it represents the sum of the parts.
 add or subtract their parts to find sums or differences.]

Tisco
 Warm-Up Activity

Use this short thinking exercise to jump-start the instructional session.

Online resource available at hand2mind.com/hosfractionsgr5

Use this VersaTiles ${ }^{\circledR}$ activity to help students activate their prior knowledge.

Can You Find a Difference?

Find the difference.

[1] $15 \frac{2}{3}-4 \frac{1}{3}$	[2] 9 - 3 年	[3] $8 \frac{5}{6}-2 \frac{4}{6}$
(4) $10 \frac{1}{4}-3 \frac{2}{4}$	(5) $7 \frac{9}{10}-3 \frac{5}{10}$	[6] $13 \frac{8}{9}-8 \frac{2}{9}$
(7) $21 \frac{1}{8}-14 \frac{5}{8}$	[8] $19 \frac{2}{5}-12 \frac{4}{5}$	(9) $12 \frac{10}{15}-8 \frac{12}{15}$
(10) $22 \frac{4}{9}-15 \frac{7}{9}$	[1] $85 \frac{3}{4}-49 \frac{1}{4}$	[12. $40 \frac{5}{6}-29 \frac{2}{6}$

fincice Bax

A_{4}^{2}	$36 \frac{1}{2}$	C 6	$11 \frac{1}{3}$	$11 \frac{1}{2}$	${ }^{6} 6$
$3 \frac{13}{15}$	${ }^{\text {H }}$ 6 ${ }_{6}$	I $6 \frac{1}{2}$	${ }^{3} 6$	K 6	${ }^{\text {L }}{ }_{5}$

[^0]the Concept
Model the Activity
WHOLE CLASS
Distribute Fraction Tower Equivalency Cubes, Fraction Number Lines (Number 3, the blank line), and dry erase markers. Have students work along with you in small groups as you model the lesson.
Write $1 \frac{1}{2}-1 \frac{1}{3}=$ \qquad on the board.
■ Ask: How do you rename these mixed numbers as fractions? $\left[1 \frac{1}{2}=\frac{3}{2}, 1 \frac{1}{3}=\frac{4}{3}\right]$
To model $\frac{3}{2}$, build a tower using three pink fraction tower pieces. To model $\frac{4}{3}$, use four orange tower pieces.
Locate $\frac{3}{2}$ on the number line using the pink tower. Mark and label $0, \frac{1}{2}$, 1 , and $\frac{3}{2}$.

- Say: We need to subtract $\frac{4}{3}$ from $\frac{3}{2}$. It helps to have common denominators.
■ Ask: What is a good common denominator? [6] Why? How many sixths are in $\frac{3}{2}$? [9]
Have students build a $\frac{9}{6}$ tower using teal fraction tower pieces and lay it on the blank Fraction Number Line to show that $\frac{9}{6}$ equals $\frac{3}{2}$. Have them trace the tower (using the dry erase marker) and draw the sixths.
- Say: Now let's subtract $\frac{4}{3}$.
- Ask: How many sixths are in $\frac{4}{3}$? [8]

Students can compare an 8-piece teal tower to the 4 -piece orange tower to confirm. Have students cross out 8 of the sixths they drew on their number lines.

- Ask: What is the difference? [$\frac{1}{6}$]

Guided Practice small groups
Prepare ahead Each small group will need two sets of Fraction Tower Equivalency Cubes, a Fraction Number Line (Number 3, the blank line), and a dry erase marker.
Students model subtraction with mixed numbers on the blank Fraction Number Line. They rename the mixed numbers as improper fractions and find a common denominator. They model and draw the minuend (renamed using the common denominator) on the number line. Students find the difference by removing (crossing out) the number of fraction pieces indicated by the subtrahend.

Find the difference.
5. $1 \frac{5}{8}-1 \frac{1}{2}=\xrightarrow{\frac{1}{8}}$
6. $2 \frac{2}{3}-\frac{1}{4}=2 \frac{5}{}$

7. $2 \frac{1}{2}-1 \frac{1}{3}=$ \square $1 \frac{1}{6}$ | \circ |
| :--- |
| \circ |
| \circ |
| \circ |

\qquad
\qquad

Check for Understanding
 WHOLE CLASS

- Ask: What if the number you're subtracting is just a fraction less than 1, not a mixed number? Does that change the way you do the problem? If so, how? [Sample: It doesn't change the way I do the problem. The only difference is I don't need to rename the number except to write it with a common denominator, if necessary.]

Summarize whole class

■ Ask: How is subtracting with mixed numbers the same as subtracting with fractions? [Sample: Both involve subtracting fractional parts.]
Review with students what they did in the activity. Have them describe in writing what they know about subtracting with mixed numbers.
Subtract.

(1) $9 \frac{2}{5}-6 \frac{3}{5}$	[1] $7 \frac{1}{3}-2 \frac{2}{3}$	(3) $12 \frac{1}{5}-7 \frac{2}{3}$
(4) $11 \frac{3}{8}-8 \frac{5}{6}$	[5] 9-56	(6) $13 \frac{1}{9}-10 \frac{2}{3}$
(7) $8 \frac{1}{8}-7 \frac{3}{4}$	[8] $16 \frac{2}{9}-7 \frac{1}{3}$	(9) $12 \frac{2}{5}-9 \frac{1}{8}$
(10) 6-25	[1] $5 \frac{1}{4}-4 \frac{2}{3}$	[1] $7 \frac{1}{6}-1 \frac{1}{4}$

42

$2_{24}^{1 \frac{13}{4}}$	$\left.\right\|_{3 \frac{1}{6}}$	$4_{15}^{\frac{8}{15}}$	$3 \frac{11}{40}$	$5_{5 \frac{11}{12}}$	${ }^{5}{ }_{4}^{2}$
$\frac{3}{8}$	${ }^{4}{ }_{2}^{4}$	${ }^{1}{ }^{\frac{1}{7}}$	$\frac{7}{12}$	${ }^{K}{ }_{29}^{9}$	$8 \frac{8}{9}$

8
jective: Find the difference between two mixed numbers with like and
unlike denominators.
WH
$4 \frac{4}{8}-1 \frac{6}{8}$
$4_{8}^{4}=\frac{12}{8}$
$3 \frac{12}{8}-1 \frac{6}{8}=2 \frac{6}{8}$

- Simplify, if possible. $2 \frac{6}{8}=2 \frac{3}{4}$
So, $4 \frac{1}{2}-1 \frac{6}{8}=2 \frac{3}{4}$.

VersaTiles ${ }^{\bullet}$ student book, page 8

Remediation

Use this page to give students additional concrete-to-abstract practice.

Online resource available at hand2mind.com/hosfractionsgr5

[^0]: VersaTiles ${ }^{\ominus}$ student book, page 7

