

9th Grade | Unit 1

Math 901
Variables and Numbers
INTRODUCTION |3

1. EXPRESSIONS 5
VARIABLES |5
NUMBER SKILLS 18
THE DISTRIBUTIVE PROPERTY 23
SELF TEST 1 33
2. SIGNED NUMBERS 37
DEFINITION 37
ADDITION 41
SUBTRACTION |45
MULTIPLICATION 49
DIVISION 52
SELF TEST 2 55
GLOSSARY 58

LIFEPAC Test is located in the center of the booklet. Please remove before starting the unit.

Author:

Robert L. Zenor, M.A., M.S.

Editor:

Richard W. Wheeler, M.A.Ed.

Consulting Editor:

Rudolph Moore, Ph.D.

Revision Editor:

Alan Christopherson, M.S.

Westover Studios Design Team:

Phillip Pettet, Creative Lead
Teresa Davis, DTP Lead
Nick Castro
Andi Graham
Jerry Wingo

s
 Alpha Omega publications

804 N. 2nd Ave. E.
Rock Rapids, IA 51246-1759
© MCMXCVI by Alpha Omega Publications, Inc. All
rights reserved. LIFEPAC is a registered trademark of
Alpha Omega Publications, Inc.

All trademarks and/or service marks referenced in this material are the property of their respective owners. Alpha Omega Publications, Inc. makes no claim of ownership to any trademarks and/ or service marks other than their own and their affiliates, and makes no claim of affiliation to any companies whose trademarks may be listed in this material, other than their own.

Some clip art images used in this curriculum are from Corel Corporation, 1600 Carling Avenue, Ottawa, Ontario, Canada K1Z 8R7. These images are specifically for viewing purposes only, to enhance the presentation of this educational material. Any duplication, resyndication, or redistribution for any other purpose is strictly prohibited. Other images in this unit are © 2009 JupiterImages Corporation

INTRODUCTION

This LIFEPAC® is your introduction to a system of mathematics unlike the arithmetic you learned in the elementary grades. In arithmetic you were taught the rules that govern the four operations of the system-addition, subtraction, multiplication, and division; and you were told which operation to perform on a given set of numbers to get the answer. Here are typical examples of exercises in arithmetic: $4+3=7,7-2=5,13 \times 4=52,12 \div 3=4$.

Algebra, like geometry, trigonometry, and calculus, is another of several mathematical systems. Like arithmetic, it has its own operating rules. Unlike arithmetic, algebra often requires you to find the value of one of the numbers-the unknown-in an exercise. Sometimes, you will have to decide for yourself what operation to use, and sometimes several operations will be used. Toward the end of this LIFEPAC, you will learn how to apply the arithmetic operations to numbers less than zero-the negative numbers.

Objectives

Read these objectives. The objectives tell you what you will be able to do when you have successfully completed this LIFEPAC. When you have finished this LIFEPAC, you should be able to:

1. Identify bases, exponents, constants, variables, numerical coefficients, terms, sums, and products.
2. Simplify algebraic expressions when possible.
3. Evaluate algebraic expressions.
4. Translate algebraic expressions.
5. Perform operations with signed numbers.

Survey the LIFEPAC. Ask yourself some questions about this study and write your questions here.
\qquad

1. EXPRESSIONS

The expression $8+3$ is a numerical expression: numerical because it consists of numbers; expression because it expresses an operation, in this case addition.

In algebra letters of the alphabet are used to represent numbers. These letters are referred to either as unknowns or as variables. An expression that contains
a variable, such as $n+3$, is an algebraic expression. Learning to handle algebraic expressions is the first step in this new system of mathematics. You will have an opportunity in this section to review and practice basic number skills and then to apply those skills in simplifying expressions by the distributive property.

OBJECTIVES

Review these objectives. When you have completed this section, you should be able to:

1. Identify bases, exponents, constants, variables, numerical coefficients, terms, sums, and products.
2. Simplify algebraic expressions when possible.
3. Evaluate algebraic expressions.
4. Translate algebraic expressions.

VARIABLES

If expressions, whether numerical or algebraic, imply addition, they are called sums; if they imply subtraction, they are called differences; if multiplication, products; and if division, quotients. These four operations will now be used in evaluating expressions.

SUMS AND DIFFERENCES

In the expression $n+3, n$ and 3 are addends. Since we have inserted the plus sign between the letter n and the number 3 , the expression is called an indicated sum. Its value cannot be determined until we know the value of n.
means that n is to be subtracted from 3. $n-3$ is called an indicated difference. The expressions $n-3$ and $3-n$ are not necessarily equal, because subtraction is an ordered operation. We see that $8-3$ cannot be 3-8. The differences are different.

In an algebraic expression, the letter that represents a number is called a variable. In the expression $n+8, n$ is the variable and 8 is the constant.

Here are some other models of sums and differences.

$$
5-y, x+6, A+10, A+B, x+y, x-y
$$

The expression $n-3$ means that 3 is to be subtracted from n. Likewise, $3-n$

Simplify. Work from left to right and perform any operation in parentheses first.

Model: $9+12-3=21-3=18$ $(2+5)-4=7-4=3$

1.1	$9+6$	1.2	$8+13$
1.3	$5+22$	1.4	$17+16$
1.5	$32+43$	1.6	$9+5+4$
1.7	$3+8+4$	1.8	$10+15+4$
1.9	$17+18+5$	1.10	$14+13+7$
1.11	$10-6+8$	1.12	15-4+1
1.13	17-3-4	1.14	$13-8+10$
1.15	$28+4-10$	1.16	$5+(6-4)$
1.17	$10+(3-2)$	1.18	$29-(7+2)$
1.19	$(13+2)-8$	1.20	$(50+5)-11$

Write the meaning of each of the following expressions.

Model: $x+10 \quad$ The sum of some number x and 10 .
$1.21 n+5$
$1.22 n-5$
$1.23 x+8$
$1.24 x-8$
$1.258-x$
$1.265-y$
$1.27 x+(5+7)$
$1.28 x-(8+2)$
$1.29 x+(8-2)$
$1.30 x+x$

Identify the variable and constant in each of the following expressions and tell if it is a sum, a difference, or neither.

Variable
a. $\quad x$

Model: $x-8$
1.31
$6+y$
N-8
1.32
1.33

A
1.34

B-3
$C+10+12$
1.35
a. \qquad
a. \qquad Constant
b. \qquad
b. \qquad C. \qquad
C. \qquad
C. \qquad
a. \qquad b. \qquad
Operation
c.difference
b. \qquad _
b. \qquad
C. \qquad
b. \qquad
c. \qquad

Write an algebraic expression of each of the following statements.
1.36 The sum of n and 6 .
1.37 The difference of 8 and n. \qquad
1.38 The difference of n and 10 .
1.39 The sum of n and itself.
1.40 The sum of n and the sum of 8 and 6 . \qquad

Sums like $8+3$ may be written as $3+8$.
The sum 11 is the same in either case. The ability to interchange addends is called the commutative property of addition.

Also, sums like $4+2+7$ may be obtained from $(4+2)+7$ or from $4+(2+7)$.

Model: Simplify $3+x+7$.

$$
\begin{gathered}
3+x+7=x+3+7 \\
=x+(3+7) \\
=x+10
\end{gathered}
$$

The sum 13 is the same in either case. The ability to change the grouping of the addends is called the associative property of addition.

These two properties can be used to simplify expressions.
$1.427+x+3$
$1.44 x+15-4$
$1.439+7+n$
1.45
$(20+2)+r$
\qquad
$1.47 \quad 15+x+10-4$
\qquad
1.49
$5+n+(15-2)$
\qquad
$1.51 \quad 17.25+3.9$
\qquad
1.53
$1.005+3.54$
\qquad
$1.55 \quad 15.63+7.956+82.735$
1.46
$8+r-4$
$(15-10)+n$
\qquad
$1.50 \quad 1.5+3.82$
$1.52 \quad 19.62+8.33+5.7$
$1.54 \quad 73.05+8.006$
1.56 25.63-8.23
1.57
1.59 $x+6.2+8.5$
\qquad
$1.6181 .56+n-2.55$
1.63
$22.6+x-11.3+1.2$
\qquad

PRODUCTS

The numerical expression $7+7$ can be renamed several ways, one of which is 2 times 7. We wish to omit the (x) as a times sign. In algebra we will use the dot, $2 \cdot 7$, or the parentheses, (2)(7). Therefore, the product of 6 and 9 will be written as $6 \cdot 9$ or (6)(9). Likewise, if one of the factors is literal - the n in 7 times n - we will write the product as $7 n$. The dot or parentheses
$1.5828 .543-14.26-3.65$
1.60
$7.5+n+9.63$
\qquad
$1.62 \quad 7.95-3.86+N$
$1.64 \quad 77.65-15.56+x+1.2$
are not to be used when writing literal products.

- Models: $6 \cdot 4,6 x, 5 n, 15 r, r 17, A 15$

Product expressions such as $r \cdot 17$ and A - 15 are to be written with the constant preceding the variable, $17 r$ and 15A. The constant preceding the variable in a product is called a numerical coefficient.

Find the product of each of the following expressions.

Name the numerical coefficient of each of the following expressions.

1.85	$6 x$	1.86	$5 n$
1.87	$22 r$	1.88	$16 p$
1.89	$13 q$	1.90	$8 \cdot 2 N$
1.91	$3 \cdot 2 x$	1.92	$7.2 r$
1.93	$9(14) P$	1.94	$2(3)(6) q$

In the operation $5 \cdot 7$, the product is the same if the expression is changed to $7 \cdot 5$. That is, $5 \cdot 7=7 \cdot 5$. The ability to interchange factors is called the commutative property of multiplication. Also, the associative property of multiplication allows you to change the grouping of the factors.

These two properties can be used to simplify expressions. When more than one variable is used, the letters are to be written in alphabetical order.

Model 1: \quad Rewrite $B \cdot 5 \cdot A$

$$
\begin{array}{rl}
B \cdot 5 \cdot A=5 & 5 \cdot B \cdot A \\
& =5 \cdot(B \cdot A) \\
& =5 \cdot(A \cdot B) \\
& =5 A B
\end{array}
$$

Model 2: Rewrite $7 \cdot K \cdot 5 \cdot H$
$7 \cdot K \cdot 5 \cdot H$ may be rewritten as $(7 \cdot 5)(H \cdot K)$ using the commutative and associative properties; thus, the simplified form is 35 HK .

Simplify. Remember: When more than one variable is used, the letters are to be written in alphabetical order. Also, no dots are to be shown in the final answers.
\qquad
1.97

$$
3 \cdot S \cdot R
$$

\qquad
1.99

$$
a \cdot c \cdot 2 \cdot 5
$$

\qquad
$1.1014 \cdot Q \cdot 2 \cdot P$ \qquad
$1.965 \cdot P \cdot 2$
$1.988 \cdot x \cdot 2 \cdot y$ \qquad
$1.100 \quad C \cdot 5 \cdot 2 \cdot A$ \qquad
$1.10210 \cdot K \cdot 2$

Write the meaning of each of the following expressions.
Model: $4 A \quad$ The product of 4 and some number.

Model: 10N-2 The difference between ten times some number and 2 .
$1.1037 n$
$1.1046 P$
$1.1058 N+5$
$1.1067+2 x$
$1.10712 x-10$ \qquad
1.108
$52-25 x$ \qquad

EXPONENTS

The numerical expression 5 times 5 may be written as 5^{2}. The 2 is called an exponent. The exponent is a counter for the number of repeated factors.
Thus $6 \cdot 6=6^{2}$ and $8 \cdot 8 \cdot 8=8^{3}$.

$$
\begin{array}{lll}
\text { Models: } & x^{2}=x \cdot x & P^{2}=P \cdot P
\end{array}
$$

x^{n} is an indicated power. x is called the base,
and n is the exponent of the base.

In each case, identify the base and the exponent of the indicated power.
Model: 3^{8} base $=\underline{3}$ exponent $=\underline{8}$
Base
Exponent
Base
Exponent

Write each of the following expressions in product form.
Model: $A^{3}=A \cdot A \cdot A$

1.119	6^{3}	$=$	1.120	74	$=$
1.121	x^{2}	$=$	1.122	y^{5}	$=$
1.123	33	$=$	1.124	14	$=$
1.125	25	$=$	1.125	$\left(\frac{1}{2}\right)^{3}$	$=$
1.127	$(2.5)^{2}$	$=$	1.128	$(.01)^{4}$	$=$

Simplify each of the following expressions.
Model: $3^{2}=3 \cdot 3=9$

1.129	23	1.130	42
1.131	53	1.132	35
1.133	10^{3}	1.134	104
1.135	17^{2}	1.136	20^{2}
1.137	73		

Circle the larger number in each pair.
Model: $1^{2}, 2^{2}$ since $1^{2}=1 \cdot 1=1$ and $2^{2}=2 \cdot 2=4$
1.138

$$
2^{5} \text { or } 5^{2}
$$

1.140
3^{2} or 2^{3}
1.142 $\left(\frac{1}{2}\right)^{3}$ or $\left(\frac{1}{3}\right)^{2}$
1.139
1.141
1.143
$(.2)^{2}$ or (.3) ${ }^{2}$

Write the following products in exponential form.
Model: $\quad A \cdot A \cdot A=A^{3}$

1.144	$x \cdot x \cdot x \cdot x$	1.145	$B \cdot B \cdot B \cdot B \cdot B$
1.146	$P \cdot P$	1.147	$N \cdot N \cdot N$
1.148	$A \cdot B \cdot A \cdot B$	1.149	$c \cdot d \cdot C \cdot d \cdot C$
1.150	xyyx	1.151	$P P Q Q Q$
1.152	abcabcabc	1.153	$x y z x y z$

EVALUATING EXPRESSIONS

Expressions containing variables can be evaluated when numerical values are given to the variables.

Model: \quad In the expression $A+4$
If $A=10$, then $10+4=14$.
If $A=75$, then $75+4=79$.
To evaluate expressions involving more than one operation, you are to use the following order of operations: working left-to-right, do any powers first, then do any multiplications or divisions, and finally do any additions or subtractions.

Model 1: Evaluate $5 x-10$ for $x=30$
Solution: Replace x with 30 and evaluate.
Replace x with 30
Multiply
5•30-10
Subtract
150-10
140
$5 x-10$

Model 2: \quad Evaluate $A^{2}+2 A+5$ for $A=4$.
Solution: $\quad A^{2}+2 A+5$
$4^{2}+2 \cdot 4+5$
$16+8+5$
$24+5$
29

Evaluate.

$1.154 a+6 \quad$ for $a=10$
1.155
$16-B \quad$ for $B=2$
1.156
B^{2}
for $B=9$ \qquad
1.157
A^{2}
for $A=2.3$ \qquad
1.158 $x^{2}+2 \quad$ for $x=5.1$ \qquad

Evaluate for $a=2, b=3$, and $c=4$.
$1.1595 a$ \qquad $1.1602 b$ \qquad
$1.1614 c$ \qquad $1.162 a^{2}$ \qquad
$1.163 a b$ \qquad $1.164 a+b$ \qquad
$1.165 a+b+c$ \qquad $1.166 a b+c$ \qquad
$1.167 a+b c$ \qquad $1.168 a b c$ \qquad
$1.170 \quad a^{2} b^{2} c^{2}$ \qquad
$1.169 a^{2} b$ \qquad
\qquad
$1.1712 a-b$ \qquad $1.172 c-a$
\qquad
$1.173 b-a$ \qquad $1.1743 a^{2}$
\qquad
$1.1764 a b^{2}$
$1.178(b+c)^{3}$ \qquad
$1.180 \quad a+b^{2}$ \qquad
$1.1823(a+b)^{2}$ \qquad
$1.184(a+b+c)^{2}$ \qquad
$1.186 \quad 3 a^{2}+4 b^{2}$ \qquad
$1.1883(a+b+c)^{2}$ \qquad

Write the algebraic expression for each of the following sentences. Use any letters you wish.
1.189 Seven added to some number. \qquad
1.190 The square of some number. \qquad
1.191 Two times the cube of some number. \qquad
1.192 The difference between the square of a number and 10. \qquad
1.193 The difference between the squares of two numbers. \qquad

Write in words the meaning of each expression.
$1.194 x^{3}$
$1.195 x^{2}+2$
$1.1963 x^{2}-4$
$1.197 \quad A^{2}-B^{2}$
$1.1983 A+4 B^{2}$

NUMBER SKILLS

Success with algebra is directly related to your understanding of basic skills in arithmetic. Included in this section is practice in adding, subtracting, multiplying, and dividing. Practice with fractions and percents is also included.

INTEGERS AND DECIMALS

Addition, subtraction, multiplication, and division of integers and decimals are building-blocks skills for working with fractions and percents.

Add.

1.199	$\begin{aligned} & 65 \\ & 84 \\ & \hline \end{aligned}$	1.200	$\begin{aligned} & 73 \\ & \underline{58} \\ & \hline \end{aligned}$	1.201	$\begin{aligned} & 96 \\ & 82 \\ & 45 \\ & \hline \end{aligned}$	1.202	$\begin{array}{r} 57 \\ 29 \\ 78 \\ \hline \end{array}$
1.203	$\begin{aligned} & 65 \\ & 43 \\ & 92 \\ & \hline 75 \\ & \hline \end{aligned}$	1.204	$\begin{aligned} & 623 \\ & 532 \\ & 481 \\ & \hline \end{aligned}$	1.205	$\begin{aligned} & 962 \\ & 853 \\ & 451 \\ & \hline \end{aligned}$	1.206	$\begin{array}{r} 7.26 \\ 5.38 \\ 62.73 \\ \hline \end{array}$
1.207		1.208	52.631 7.05 9.006				
Subtract.							
1.209	$\begin{aligned} & 72 \\ & 58 \\ & \hline \end{aligned}$	1.210	$\begin{array}{r} 59 \\ \underline{28} \\ \hline \end{array}$	1.211	$\begin{array}{r} 73 \\ 48 \\ \hline \end{array}$	1.212	$\begin{aligned} & 92 \\ & 79 \\ & \hline \end{aligned}$
1.213	$\begin{array}{r} 523 \\ 99 \\ \hline \end{array}$	1.214	$\begin{array}{r} 6521 \\ \quad 438 \\ \hline \end{array}$	1.215	$\begin{array}{r} 5431 \\ 3413 \\ \hline \end{array}$	1.216	$\begin{array}{r} 5.83 \\ 2.96 \\ \hline \end{array}$
1.217	$\begin{aligned} & 93.056 \\ & 43.685 \\ & \hline \end{aligned}$	1.218	$\begin{aligned} & 1.2306 \\ & 0.9615 \\ & \hline \end{aligned}$				

Multiply. Show your work.
1.219

1.221
7.23
1.222
52.63
.02
1.54

1.223	$\begin{array}{r} 0.056 \\ .73 \\ \hline \end{array}$	1.224	$\begin{array}{r} 929 \\ 29 \\ \hline \end{array}$
1.227	66.28	1.228	10.05
	5.84		1.06

Divide. Show your work.
$1.229 \quad \frac{659}{8}$
$1.230 \quad \frac{732}{2}$
$1.231 \frac{564}{4}$
$1.232 \quad \frac{121}{11}$
$1.233 \quad \frac{144}{6}$
1.234
$8 \longdiv { 2 5 6 3 }$
1.235
$9 \longdiv { 2 8 . 5 4 }$
$1 . 2 3 6 \quad 7 \longdiv { 5 2 8 0 }$
1.237
$6 3 \longdiv { 5 9 6 }$
1.238
$8 5 \longdiv { 7 2 6 . 5 }$
1.239
$9 . 2 \longdiv { 5 2 . 0 6 3 }$

FRACTIONS

Remember that fractions must have common denominators to be added or subtracted. Products of fractions are found by multiplying numerator by numerator
and denominator by denominator. Quotients of fractions are found by using the reciprocal of the divisor and then multiplying. All results are to be reduced to lowest terms.

Models: $\quad \frac{1}{2}+\frac{1}{3}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6} \cdot \frac{2}{6}=\frac{6}{30}=\frac{1}{5}$

$$
3 \frac{1}{4}-2 \frac{1}{5}=3 \frac{5}{20}-2 \frac{4}{20}=1 \frac{1}{20} \quad 2 \frac{1}{2} \div 1 \frac{3}{7}=\frac{5}{2} \div \frac{10}{7}=\frac{5}{2} \cdot \frac{7}{10}=\frac{35}{20}=\frac{7}{4} \text { or } 1 \frac{3}{4}
$$

Add. Show your work.

$1.240 \quad \frac{2}{3}+\frac{3}{8}=$
$1.242 \frac{15}{7}+\frac{2}{3}+\frac{1}{6}=$
$1.244 \quad 10 \frac{3}{7}+19 \frac{5}{9}=$
$1.241 \frac{5}{4}+\frac{7}{9}=$
$1.243 \quad 1 \frac{2}{3}+5 \frac{3}{8}=$
$1.245 \quad 1 \frac{1}{2}+5 \frac{3}{4}=$

Subtract. Show your work.
1.246
$\frac{6}{11}-\frac{4}{11}=$
$1.248 \frac{13}{16}-\frac{3}{8}=$
$1.247 \quad \frac{9}{32}-\frac{1}{16}=$
2.250

$$
7 \frac{9}{16}-5 \frac{1}{5}=
$$

$1.2512 \frac{5}{8}-1 \frac{3}{8}=$

Multiply. Show your work.
$1.252 \quad \frac{2}{3} \cdot \frac{5}{8}=$
$1.253 \quad \frac{5}{17} \cdot \frac{3}{8}=$
1.254 $\frac{4}{11} \cdot \frac{10}{8}=$
$1.255 \quad 7 \frac{1}{8} \cdot 5 \frac{2}{3}=$
$1.256 \quad 15 \frac{4}{9} \cdot 3 \frac{1}{5}=$

Divide. Show your work.
$1.257 \quad \frac{2}{3} \div \frac{4}{9}=$
$1.258 \quad \frac{1}{3} \div \frac{3}{8}=$
$1.259 \quad \frac{4}{11} \div \frac{4}{9}=$
$1.260 \quad 8 \frac{1}{2} \div 2 \frac{1}{4}=$

PERCENT

Skills with percent include converting percents to decimals, decimals to percents, and fractions to percent. To change percents to decimals, divide the percent
by 100; to change decimals to percent, multiply the decimal by 100 and include the \% sign. To change fractions to percent, multiply the fraction by 100, reduce the result, and include the \% sign.

Models: Change 34\% to a decimal number.

$$
34 \%=34 \div 100=0.34
$$

Change 0.19 to a percent. $0.19=0.19 \cdot 100 \%=19 \%$

Change $\frac{3}{4}$ to a percent.

$$
\frac{3}{4}=\frac{3}{4} \cdot 100 \%=\frac{300}{4} \%=75 \%
$$

Change each percent to a decimal.
1.261
1.263
1.265
1.6\% \qquad

Change each decimal number to a percent.
0.15 \qquad 1.267
1.269

32
0.06
1.05 \qquad
0.0075 \qquad
1.270
\square
$1.262 \quad 22 \%$
1.264302%
\qquad
\qquad

Change each fraction to a percent. Show your work.

1.271	$\frac{1}{2}$	-	1.272	$\frac{3}{8}$
1.273	$\frac{5}{20}$	-	1.274	$\frac{4}{12}$
1.275	$\frac{15}{50}$	\square		

Write the required quantities. Show your work.
1.276 15\% of 20
\qquad
1.28030 is what \% of 60
1.28270 is 30% of what number
1.277 13\% of 50
1.27935% of 70
1.28166 is what \% of 150
$1.283 \quad 90$ is 50% of what number

THE DISTRIBUTIVE PROPERTY

Algebraic expressions often use parentheses to group a sum or difference of two or more numbers. The distributive property is the rule that may be used to evaluate the product of a number and an expression in parentheses.

NUMBERS

The expression 7(4+5) means to multiply seven by the sum of 4 and 5 . If we add the 4 and 5 first we have:

$$
7(4+5)=7(9)=63 .
$$

However, we may multiply another way:

$$
\begin{aligned}
7(4+5) & =7 \cdot 4+7 \cdot 5 \\
& =28+35 \\
& =63
\end{aligned}
$$

Both methods lead to the same result.
The latter method applies the distributive property.

Another model of the distributive property is:

$$
\begin{aligned}
8(5+6) & =8 \cdot 5+8 \cdot 6 \\
& =40+48 \\
& =88
\end{aligned}
$$

To verify that this method of multiplication is correct, add the 5 and 6 first, then multiply:

$$
8(5+6)=8(11)=88 .
$$

The distributive property stated formally is:

DISTRIBUTIVE PROPERTY

For numbers $a, b, c, a(b+c)=a b+a c$ and $a(b-c)=a b-a c$.

Models:

$$
\begin{aligned}
6(3+2) & =6 \cdot 3+6 \cdot 2 \\
& =18+12 \\
& =30 \\
7(5-2) & =7 \cdot 5-7 \cdot 2 \\
& =35-14 \\
& =21 \\
3(20+2) & =3 \cdot 20+3 \cdot 2 \\
& =60+6 \\
& =66 \\
12(100-1) & =12 \cdot 100-12 \cdot 1 \\
& =1200-12 \\
& =1188
\end{aligned}
$$

Use the distributive property and simplify. Show your work as in the preceding models.
1.284
$8(4+3)$
1.285
$9(8+2)$
$1.286 \quad 15(5+2)$
$1.28717(4+1)$
$1.288 \quad 13(5+4)$
$1.289 \quad 20(2+3)$
1.290
$6.5(5+1)$
1.291
$8.6(3.2+4.6)$
$1.2927(2+3+4)$
1.293
$5(5+4+1)$
1.294
$6(3+2+5)$
$1.295 \quad 10(1+3+5)$
\qquad
\qquad
\qquad

$x+y$ is called an indicated sum, $x \cdot y$ is called an indicated product, and $x-y$ is called an indicated difference.

Models: Indicated sums
$6+8$
$m+2$ $d+(6-3)$
$(7+m)+n$
$4 \cdot 5+4 \cdot 7$

Indicated differences
5-3
2-s
$y-(4+3)$
$5 m-4 n$
3•7-3•2

Indicated products
$6 \cdot 8$
2j
$r(6+5)$
$3 p \cdot 4 q$
$4(5+7)$

Since the distributive property states that $a(b+c)=a b+a c$ and $a(b-c)=a b-a c$, we may also write $a b+a c=a(b+c)$ and $a b-a c$ $=a(b-c)$.
$a b+a c$ is an indicated sum, and $a(b+c)$ an indicated product.
$a b-a c$ is an indicated difference, and
$a(b-c)$ is an indicated product.

Model: Change $6 \cdot 2+6 \cdot 5$ to an indicated product.
Solution: Since $a \cdot b+a \cdot c=a(b+c)$ and in our problem $a=6, b=2$, and $c=5$, we have $6 \cdot 2+6 \cdot 5=6(2+5)$.

This is an example of using the distributive property to change an indicated sum to an indicated product.

Change the following indicated sums to indicated products as in the preceding model. (Do not find the answer.)
1.296
$5 \cdot 20+5 \cdot 3$
1.297
$8 \cdot 16+8 \cdot 4$
$1.2989 \cdot 7+9 \cdot 8$
1.299
$6 \cdot 5+6 \cdot 8$
1.300
$15 \cdot 4+15 \cdot 10$
1.301
$9 \cdot 10+9 \cdot 5$
$1.3025 \cdot 8+9 \cdot 5$
1.303
$4 \cdot 7+8 \cdot 7$
$1.3043 \cdot 10+20 \cdot 3$

One numerical application of the distributive property is simplifying multiplication. Suppose you want to
multiply 8 times 105 . Using the distributive property:

$$
8 \cdot 105=8(100+5)=800+40=840
$$

Model:
9•99
Step 1 Think 99 = $100-1$
Step 2 So 9•99 = 9(100-1)
Step $3=900-9$
Step 4 Therefore, 891 is the product of $9 \cdot 99$.

Use the distributive property to perform the following multiplications.

1.305	$5 \cdot 23$	$=5(20+3)$	$=$	100	+	15	$=$	
1.306	$4 \cdot 21$	$=4(20+1)$	$=$	a.	+	b.		c.
1.307	$7 \cdot 15$	$=7(10+5)$	$=$	a.	+	b.		c.
1.308	$6 \cdot 17$	$=\mathrm{a}$.	$=$	b.				c.
1.309	8•14	$=\mathrm{a}$.	$=$	b.			=	c.
1.310	8•15	$=\mathrm{a}$.	$=$	b.			=	c.
1.311	$6 \cdot 12$	$=\mathrm{a}$.	=	b.			=	c.
1.312	$9 \cdot 98$	$=9(100-2)$	=	900-18			$=$	
1.313	$9 \cdot 9$	$=9(10-1)$	=	a.			-	b.
1.314	8•97	$=\mathrm{a}$.	=	b.				C.
1.315	9-102	$=\mathrm{a}$.	=	b.			=	C.
1.316	7•19	$=\mathrm{a}$.	=	b.			=	C.
1.317	$5 \cdot 29$	$=\mathrm{a}$.		b.				C.
1.318	$12 \cdot 102$	$=\mathrm{a}$.		b.				C.

VARIABLES

Most applications of the distributive property involve one or more variables.

Models: Products Sums or Differences

$$
\begin{aligned}
6(x+2) & =6 x+12 \\
x(x+4) & =x^{2}+4 x \\
A(B+C) & =A B+A C \\
(x+3) 5 & =5 x+15 \\
(R+4) R & =R^{2}+4 R \\
5(x-5) & =5 x-25 \\
x(x-5) & =x^{2}-5 x \\
A(B-C) & =A B-A C \\
(A-3) 4 & =4 A-12 \\
(N-5) N & =N^{2}-5 N
\end{aligned}
$$

Change the following products to sums or differences.
Models: $\quad 5(x+3)=5 \cdot x+5 \cdot 3=5 x+15$

$$
2 m(m-4)=2 m \cdot m-2 m \cdot 4=2 m^{2}-8 m
$$

1.319 \qquad 1.320
$7(A-6)=$ \qquad
$1.321 \quad 12(A-B) \quad=$
$1.32220(A+B)=$ \qquad
$1.32310(N+3) \quad=$
$1.324(x+2) 3$ \qquad
$1.325(x-6) 5=$
$1.326 \quad N(N-7)$ \qquad

1.328
$p(5-p)=$ \qquad

$1.3305\left(x^{2}+6\right)$ \qquad
$1.3317\left(x^{2}+6 x\right)=$
$1.332 \quad 12(2 x+1) \quad=$
$1.3333(5 x-4) \quad=$
$1.3344\left(x^{2}+x+1\right)=$ \qquad
$1.3355\left(N^{2}+2 N-1\right)=\square$
$1.3366\left(A^{2}-A-4\right)=$ \qquad
$1.3378\left(p^{2}+3 p-4\right)=\square$
$1.338 \quad 16\left(4-2 K+k^{2}\right)=$ \qquad
$1.3399\left(y^{2}+5 y+6\right)=\square$
$1.340 x\left(x^{2}+2 x\right)=$ \qquad
$1.341 p\left(p^{2}-3 p\right) \quad=$
$1.342 N\left(N^{2}+2 N+1\right)=$ \qquad
1.343
1.345

$$
6 x\left(2 x^{2}+3 x\right)=
$$

$2 x\left(x^{2}+3 x+5\right)=$ \qquad
$15 x\left(5 x^{2}+6 x+3\right)=$ \qquad

$$
x^{2}\left(x^{2}+2 x+1\right)=
$$

\qquad

Change the sums or differences to products.

Models: $\quad 5 x+5=5 \cdot x+5 \cdot 1=5(x+1)$

$$
x^{2}-2 x=x \cdot x-x \cdot 2=x(x-2)
$$

$1.3486 x+12$ \qquad
1.350
$8 x-16$ \qquad
$1.352 \quad 13 x-26$ \qquad 1.353

10A-20
1.355
$P^{2}-10 P$
$1.357 x^{3}+x^{2}$
1.359
$6 A+6 B+6 C$
$1.3497 x+14$
$1.351 \quad 12 x+36$
1.356

$$
B^{2}+6 B
$$

$$
=
$$

\qquad
1.358

$$
6 x^{2}+6 y^{2}
$$

$$
=
$$

\qquad
= \qquad
\qquad
\qquad
= \qquad
\qquad
=
\qquad
product of $6(x+2)$, must be rewritten as a sum: $6(x+2)+3=6 x+12+3$. Now we may add the two constants 12 and 3 , and we get $6(x+2)+3=6 x+15.6 x$ and 15 cannot be added; therefore, the expression $6 x+15$ is an indicated sum in its simplest form.

In the expression $6(x+2)+3$, before any
addition can be done, the first term, the
In the expression $6(x+2)+3$, before any
addition can be done, the first term, the
Algebraic expressions can be simplified by combining, through addition or subtraction, as many variable terms or constant terms as possible.

Model 1: \quad Simplify, if possible, $7(A+3)-10$

$$
\text { Solution: } \begin{aligned}
7(A+3)-10 & =7 A+21-10 \\
& =7 A+11
\end{aligned}
$$

Model 2: \quad Simplify $10+3(2 x+6)-20$
Solution: $\quad 10+6 x+18-20$
$6 x+10+18-20$
$6 x+28-20$
$6 x+8$

Simplify each of the following expressions. Show your work.

1.360	$7(x+2)+12$	1.361	$8(x+6)-10$
1.362	$13(x+2)+13$	1.363	$10(2 x+3)-20$
1.364	$15(x+1)+5$	1.365	$4(x+1)-4$
1.366	$12+3(4+x)$	1.367	$15+6(x+1)$
1.368	$18(x+1)-9$	1.369	$7(2 x+1)-7$
1.370	$4(3 x+3)-10$	1.371	$(2 x+3) 5+6$
1.372	$10+4(x+1)+5$	1.373	$12+3(2 x-3)+4$
1.374	$18+5(2 x-1)+3$	1.375	$14+2(3 x+8)-22$

Some variable terms may be combined by using the distributive property. In the expression $3 x+4 x$, the terms $3 x$ and $4 x$, both products, have a common factor x; that is, both numbers 3 and 4 multiplied by the number x.

Model 1: $\quad 3 x+4 x=(3+4) x$

$$
=7 x
$$

Model 2: $\quad 7 x+2 x=(7+2) x$

$$
=9 x
$$

Model 3: $\quad 7 x-2 x=(7-2) x$

$$
=5 x
$$

The same distributive property also tells us that $6 x+4 y$ cannot be combined. Why?

Terms with like variables (the same variables with the same respective exponents) may be combined by adding or subtracting their numerical coefficients.

Models: $6 x-4 x=(6-4) x=2 x$
$8 y+15 y=(8+15) y=23 y$
$7 A B-3 A B=(7-3) A B=4 A B$
$5 N^{2}+7 N^{2}=(5+7) N^{2}=12 N^{2}$
$8 p^{2}+7 p=$ (cannot be combined since the exponents are not the same)

Simplify by combining terms when possible.
1.376
$8 x+3 x$
1.377
$2 x+x$
1.378
$5 x+8 x$
$1.379 \quad 12 x+3 x$
1.380
$15 x+2 x$
1.381
$7 x-5 x$
$1.3824 x-x$
1.383 10x-3x

ISBN 978-0-86717-621-6

Alpha Omega
pUBLICATIONS

804 N. 2nd Ave. E
Rock Rapids, IA 51246-1759

