bioclinic naturals

P-5-P Pyridoxal 5'-Phosphate 50 mg Helps in Energy Metabolism

About P-5-P Pyridoxal 5'-Phosphate

- Pyridoxal 5'-phosphate (P-5-P) is the biologically active form of vitamin B6. Although there are several other forms of this vitamin, they must all first be converted into P-5-P, the active form.¹
- P-5-P is needed by over 180 enzymes, with a broad range of functions.
 This includes the metabolism of glucose, DNA synthesis, production of hemoglobin, and neurotransmitter synthesis.²
- There is some genetic variability in the ability to convert other forms
 of B6 to P-5-P. For example, variations in the genes ALPL and TYMS
 have both been linked to lower levels of P-5-P in the blood.^{3,4}
- Low dietary intake and deficiency of this vitamin are also common. At least 10% of each age/gender group in the United States was found to consume less than the recommended amount, with as many as 50% of women over 50 having insufficient dietary intake.⁵
- Approximately one-quarter of (non-supplementing) people in the United States had low blood P-5-P levels, the best indicator for vitamin B6 status.⁶
- Several other factors have been associated with low P-5-P levels, including the use of oral contraceptives, smoking, consuming alcohol, and increased age.^{5,6}
- Low levels of P-5-P have been associated with increased C-reactive protein levels, an indicator of inflammation, as well as a higher incidence of several inflammatory conditions.⁷⁻¹¹

How to Use P-5-P Pyridoxal 5'-Phosphate

• Take 1 capsule per day or as directed by a health care practitioner.

Cautions and Contraindications

 High-dose supplementation (at least 1 g per day) with pyridoxine has been associated with peripheral neuropathy in a small number of cases, but this effect is not expected or observed with P-5-P.^{5,12} Keep out of reach of children.

Drug Interactions

 Levodopa should not be taken with vitamin B6 when used in isolation, though when levodopa is combined with carbidopa, P-5-P may prevent a vitamin B6 deficiency.¹³ Vitamin B6 has been associated with reduced adverse effects from several prescription medications, including cycloserine, isoniazid, oral contraceptives, and some anticonvulsants.^{1,14}

Quick Tips for Optimal Health

vegetables, and bananas.15

Dietary sources of vitamin B6 come from a variety of

foods, including meat, poultry, fish, legumes, nuts, cereals,

	Some groups have been found to be more likely to have suboptimal vitamin B6 status, including smokers, older adults, non-Hispanic Blacks, and current and former oral contraceptive users. ⁶
	Supplementation with vitamin B6 has been associated wit a reduction in symptoms attributed to oral contraceptives. For example, in a randomized and controlled trial, indices of low mood improved among participants taking B6 but worsened with a placebo (while taking oral contraceptives). ¹⁶
	A higher dietary intake of vitamin B6 has been associated with lower rates of symptoms of anxiety and low mood among women, even in individuals not taking contraceptives. 17
	Vitamin B6 has also been found to reduce the symptoms of nausea associated with pregnancy, an effect attributed to P-5-P specifically. 18,19
	Women may be at particularly high risk for low vitamin B6 status. In a large analysis of the U.S. population, 32% of women were found to have low P-5-P levels compared to only 16% of men. ⁶
	Vitamin B6 has been found to improve cellular uptake of magnesium and may help correct a magnesium deficiency with superior benefits when used together. ^{20–23}

PATIENT NAME:	PRACTITIONER CONTACT INFORMATION:
PRACTITIONER NOTES:	

References

- 1. di Salvo, M.L., Safo, M.K., & Contestabile, R. (2012). Biomedical aspects of pyridoxal 5'-phosphate availability. Front Biosci, 4(3), 897-913.
- 2. Al Mughram, M.H., Ghatge, M.S., Kellogg, G.E., et al. (2022). Elucidating the interaction between pyridoxine 5'-phosphate oxidase and dopa decarboxylase: Activation of B6-dependent enzyme. Int J Mol Sci, 24(1), 642.
- 3. Carter, T.C., Pangilinan, F., Molloy, A.M., et al. (2015). Common variants at putative regulatory sites of the tissue nonspecific alkaline phosphatase gene influence circulating pyridoxal 5'-phosphate concentration in healthy adults. *J Nutr.* 145(7), 1386-93.
- 4. Cheng, T.Y., Makar, K.W., Neuhouser, M.L., et al. (2015). Folate-mediated one-carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women's Health Initiative observational study. Cancer, 121(20), 3684-91.
- 5. Institute of Medicine. (1998). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: The National Academies Press. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK114313/
- 6. Morris, M.S., Picciano, M.F., Jacques, P.F., et al. (2008), Plasma pyridoxal 5'-phosphate in the US population: The National Health and Nutrition Examination Survey, 2003–2004. Am J Clin Nutr. 87(5), 1446-54.
- 7. Ueland, P.M., McCann, A., Midttun, Ø., et al. (2017). Inflammation, vitamin B6 and related pathways. Mole Aspects Med, 53, 10-27.
- Kiblawi, R., Holowatyj, A.N., Gigic, B., et al. (2020). One-carbon metabolites, B vitamins and associations with systemic inflammation and angiogenesis biomarkers among colorectal cancer patients: Results from the ColoCare study. Br J Nutr, 123(10), 1187-200.
- 9. Friedman, A.N., Hunsicker, L.G., Selhub, J., et al. (2004). Clinical and nutritional correlates of C-reactive protein in type 2 diabetic nephropathy. Atherosclerosis, 172(1), 121-5.
- 10. Saibeni, S., Cattaneo, M., Vecchi, M., et al. (2003). Low vitamin B(6) plasma levels, a risk factor for thrombosis, in inflammatory bowel disease: Role of inflammation and correlation with acute phase reactants. Am J Gastroenterol, 98(1), 112-7.
- 11. Kelly, P.J., Kistler, J.P., Shih, V.E., et al. (2004). Inflammation, homocysteine, and vitamin B6 status after ischemic stroke. Stroke, 35(1), 12-5.
- 12. Vrolijk, M.F., Opperhuizen, A., Jansen, E.H.J.M., et al. (2017). The vitamin B6 paradox: Supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function. *Toxicol In Vitro*, 44. 206-12.
- 13. Wise, A., Lemus, H.N., Fields, M., et al. (2022). Refractory seizures secondary to vitamin B6 deficiency in Parkinson disease: The role of carbidopa-levodopa. Case Rep Neurol, 14(2), 291-5.
- 14. Var, C., Keller, S., Tung, R., et al. (2014). Supplementation with vitamin B6 reduces side effects in Cambodian women using oral contraception. Nutrients, 6(9), 3353-62.
- 15. Hadtstein, F., & Vrolijk, M. (2021). Vitamin B-6-induced neuropathy: Exploring the mechanisms of pyridoxine toxicity. Adv Nutr, 12(5), 1911-29.
- 16. Curtin, A.C., & Johnston, C.S. (2022). Vitamin B6 supplementation reduces symptoms of depression in college women taking oral contraceptives: A randomized, double-blind crossover trial. *J Diet Suppl*, 1-13. Advance online publication.
- 17. Kafeshani, M., Feizi, A., Esmaillzadeh, A., et al. (2020). Higher vitamin B6 intake is associated with lower depression and anxiety risk in women but not in men: A large cross-sectional study. Int J Vitam Nutr Res, 90(5-6), 484-92.
- 18. Jayawardena, R., Majeed, S., Sooriyaarachchi, P., et al. (2023). The effects of pyridoxine (vitamin B6) supplementation in nausea and vomiting during pregnancy: A systematic review and meta-analysis. Arch Gynecol Obstet, Advance online publication.
- 19. Matok, I., Clark, S., Caritis, S., et al. (2014). Studying the antiemetic effect of vitamin B6 for morning sickness: Pyridoxine and pyridoxal are prodrugs. J Clin Pharmacol, 54(12), 1429-33.
- 20. Abraham, G.E., Schwartz, U.D., & Lubran, M.M. (1981). Effect of vitamin B-6 on plasma and red blood cell magnesium levels in premenopausal women. Ann Clin Lab Sci, 11(4), 333-6.
- 21. Fathizadeh, N., Ebrahimi, E., Valiani, M., et al. (2010). Evaluating the effect of magnesium and magnesium plus vitamin B6 supplement on the severity of premenstrual syndrome. *Iran J Nurs Midwifery Res,* 15(1), 401-5.
- 22. Noah, L., Dye, L., Bois De Fer, B., et al. (2021). Effect of magnesium and vitamin B6 supplementation on mental health and quality of life in stressed healthy adults: Post-hoc analysis of a randomised controlled trial. Stress and Health. 37(5). 1000-9.
- 23. Majumdar, P., & Boylan, L.M. (1989). Alteration of tissue magnesium levels in rats by dietary vitamin B6 supplementation. Int J Vit Nutr Res, 59(3), 300-3.