AKD2G PushCorp Standard Interface

Hardwired Signals

X21/A3 (DIN 1) – Fault Reset X21/A4 (DIN 2) – Analog Run² X21/A5 (DIN 3) – Hardware Enable¹ X21/B7 (DOUT 1) – Motor Overload Warning² X21/B5-B6 (DOUT 9) – BTB/RTO X21/A1-A2 (AIN \pm 10VDC) – Command Velocity² X21/B1-B2 (AOUT 0-10VDC) – Actual Velocity² X21/A11-B11 – STO Inputs¹ X21/B3 – DIO 24V Supply* X21/B4 – DIO 0V/COM³

¹ Required for Operation

² Analog/Discrete Control Only

³ Should be bonded to same common as STO

* AKD2G will show a warning if not supplied with 24V

EthernetIP

Scanlist Data

452
Kollmorgen
43
Generic
20
1
3
AKD2G-SPI

Assembly Data

	Instance	Bytes	Words
Producing	104	14	7
Consuming	103	6	3

IP Addresses

EthernetIP	192.168.1.13
Service Port	192.168.1.14

IO Map

Control Inputs from AKD2G					
Word(s)	Byte(s)	Bit(s)	Description		
		0	Fault		
		1	User Configurable		
		2	At Tool Change*		
	0	3	User Configurable		
	0	4	User Configurable		
		5	User Configurable		
		6	User Configurable		
0		7	User Configurable		
0		8	User Configurable		
		9	User Configurable		
	1	10	User Configurable		
		11	User Configurable		
		12	User Configurable		
		13	User Configurable		
		14	User Configurable		
		15	User Configurable		
1-2	2-5	16-47	Actual Velocity		
3-4	6-9	48-79	Actual Amperage		
5-6	10-13	80-111	Motor Temperature		

	Control Outputs to AKD2G					
Word(s)	Byte(s)	Bit(s)	Description			
	0	0	Clear Fault			
		1	Velocity Enable			
		2	Go Tool Change*			
		3	User Configurable			
		4	User Configurable			
		5	User Configurable			
		6	User Configurable			
0		7	User Configurable			
U	1	8	User Configurable			
		9	User Configurable			
		10	User Configurable			
		11	User Configurable			
		12	User Configurable			
		13	User Configurable			
		14	User Configurable			
		15	User Configurable			
1-2	2-5	16-47	Velocity Command			

*For STC1015 and STC1515 Only

Scaling

Command and Actuals are 32-bit signed integers.

Velocity scaling is whole digit RPM Example: Reading 6,000(base 10) on the integer is 6,000 RPM

Amperage scaling is 0.001mA. Example: Reading 2,356(base 10) on the integer is 2.356 amps

Temperature scaling is 0.001 degrees Celsius. Example: Reading 27,018(base 10) on the integer is 27.018°C

16-bit Tips and Tricks

Pseudo-code examples of resolving two 16-bit numbers into a coherent value.

IF Word2 > 0 THEN ActVel = Word2* 2^{16} +Word1 ELSE ActVel = Word2* 2^{16} +Word1 - 2^{32} ENDIF

IF Word4 > 0 THEN ActAmp = $(Word4*2^{16}+Word3)/1000$ ELSE ActAmp = $(Word4*2^{16}+Word3-2^{32})/1000$ ENDIF

IF Word6 > 0 THEN MotTemp = $(Word6*2^{16}+Word5)/1000$ ELSE MotTemp = $(Word6*2^{16}+Word5-2^{32})/1000$ ENDIF

Negative Command Values

Operating the spindle in the reverse direction via EthernetIP requires a negative value at the Group/BTD/BITS output word for the Command Velocity.

From a scalar point of view, this is managed with the 2's compliment of the number across the 32bit word – some robots and most PLCs will automatically resolve the 2's compliment; simpler systems require manipulation of the value.

For example, the target is to reverse 5,000 RPM, and we are working with the 32 bit word for the AKD2G EIP Velocity Command.

So, for the 32 bit word, -5,000 has the scalar value of 4,294,962,296

A simple algorithm can accomplish this with basic mathematic operators (pseudo code):

IF [desired velocity] < 0 THEN [command velocity] = 2³² +[desired velocity] ELSE [command velocity] = [desired velocity] END 2³² = 4,294,967,296

4,294,967,296 - 5000 = 4,294,962,296

Assigning Output Words

Further manipulation if the output side needs to be split into two groups of 16 bits:

Word1 = [command velocity] MOD 2^{16}

 $Word2 = ([command velocity] - Word1)/2^{16}$